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Abstract

Scanning probe microscope-enabled nanoindentation is increasingly reported as a means to assess the mechanical properties of nanoscale,
compliant material volumes such as polymeric films and bio-membranes. It has been demonstrated experimentally that the Hertzian contact model
developed for linear elastic materials of semi-infinite thickness fails to accurately predict the nominal elastic modulus E for polymeric thin films,
consistent with limitations identified for comparably rigid metal and ceramic thin films. Here we employ computational simulations based on
experimental parameters for compliant polyelectrolyte films, in order to separate limitations of such analysis due to the finite material thickness
from those due to nonlinear constitutive relations approximating polymer deformation. We thus identify the range of strains, strain rates, and
material thickness for which a modified Hertzian solution can accurately predict the elastic stiffness of polymeric films of nanoscale (b100nm)
thickness from scanning probe microscope-enabled nanoindentation experiments.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nanoindentation is increasingly utilized to estimate the
mechanical properties of polymeric films of nanometer-scale
thickness. Applications of such films range from bioengineering
via synthetic cell substrata [1,2] to insulating layers in integrated
circuits [3]. In the context of biological applications, the
mechanical compliance of these nanoscale films affects cell
functions ranging from cellular differentiation to cellular
proliferation to apoptosis (programmed cell death) [4–7]. As
scanning probe microscopes (SPMs) exhibit the load and
displacement resolution/maxima to deform compliant materials
such as polymeric films, SPM-enabled nanoindentation is
increasingly reported as a means to assess the mechanical
properties of such nanoscaled materials. Most experimental
studies to date have applied the Hertzian elastic contact model
developed for extraction [8] of Young's elastic modulus E of
linear elastic, semi-infinite materials from the nanoindentation
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load–depth (P–h) response. However, care must be taken in
applying this model to nonlinear elastic materials of finite
thickness, such as synthetic polymeric films and biological
tissues or cells.

Studies in metallic and ceramic thin films have established
that E calculated from the nanoindentation response is very
strongly influenced by the thin film thickness and substrate
mechanical properties, due chiefly to the transfer of contact-
induced stresses to the film/substrate interface and to the
substrate itself [3,6]. This influence of the underlying substrate
on calculated mechanical properties has been addressed by
several investigators, chiefly for sharp, self-similar (e.g.,
conical) indenter geometries for which contact stresses decay
sharply with distance from the indenter [9–12]. To capture only
the response of the film, it is common to limit the indentation
depth to less than 10% of the film thickness— a purely empirical
estimate which varies as a function of elastic and plastic
mismatch between the film and substrate [13]. However, as an
increasing number of applications require film thickness and/or
microstructural inhomogeneities of b100nm length scales, it is
desirable experimentally to relax this constraint and still obtain
accurate estimates of polymer mechanical properties.
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Fig. 1. Finite element model used in simulations of polymer film indentation.
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Due to the inherent geometric nonlinearity of such multiaxial
contact, there currently exists no convenient, closed-form
solution for the contact of mechanically compliant (and/or
nonlinear elastic) samples of finite thickness. Dimitriadis et al.
addressed the failure of Hertzian contact mechanics to estimate
E from the loading portion of the P–h indentation response for
compliant samples of finite thickness, and offered a modified
model including a film thickness correction [5]. This model
derives the Green's function for a sample of finite thickness
bonded to the substrate. The integral equations are satisfied by a
computed, effective pressure profile acting on the Hertzian
contact area. The model assumes an appropriate range of sample
thickness t and indentation depth h for a given spherical inden-
ter probe radius. This is based on the assumption that, for a
material to behave as a linear elastic solid, the maximum no-
minal strains should not exceed 10%, or h≤0.1t. These models
are based on the early work of Chen et al., which primarily
addresses the problem of stresses induced in multilayer media
that is well-adhered to the substrate [14,15]. Investigations for
understanding the effect of finite thickness on estimations of
elastic modulus E have shown a different dependency on
Poisson's ratio ν compared to the models proposed by Dimi-
triadis et al. [16]. Mahaffy et al. revised this model to include
poorly adhered films [26] and more conservative corrections for
finite thickness to determine experimentally the complex elastic
modulus and ν of mammalian cells via SPM-enabled nanoin-
dentation. Although the details of these three models differ, they
all address the error in finite thickness in accurate determination
of E via contact-based measurements on thin, compliant poly-
mer films.

Engler et al. showed that the experimental P–h responses
agree well with the thickness-corrected Hertzian elastic cone
model proposed by Dimitriadis et al., for the specific case of
polyacrylamide hydrogels of thickness t=5μm for a maximum
indentation depth of h=3μm [7]. In contrast, Ludovic et al. [17]
have demonstrated that E for polyelectrolyte multilayers (PEM)
of micrometer-scale thickness is a function of t when calculated
from SPM-enabled indentation, even when this thickness
correction is applied to the linear elastic Hertzian elastic sphere
model. Finally, Thompson et al. have shown that E calculated
from SPM-enabled spherical nanoindentation of hydrated,
nanoscale PEM films (tb200nm) agrees well with the elastic
moduli calculated from other independent experimental techni-
ques and by other researchers for similar PEMs, even in the
absence of a thickness correction to the Hertzian model [4].

These contrasting results in polymer films of different com-
positions and thicknesses highlight an important question: Is the
E of a nanoscale polymer film measured via SPM-enabled
indentation an intrinsic mechanical property of the material, or
an artifact due to combinations of finite thickness, large applied
strains, and the inherent nonlinear elasticity of the polymeric
material? This issue becomes critical as polymers of decreasing
physical dimensions are synthesized and characterized for
mechanics–critical applications ranging from biological subs-
trata to low-dielectric constant insulators in integrated circuits.
Computational simulations such as finite element analysis
(FEA) can be used to analyze the mechanics of deformation
for thin films confined to substrates during nanoindentation. For
example, stress evolution beyond the elastic limit has been
simulated via FEA for layeredmetallic (titanium/aluminum) thin
films [18]. Here we simulate the spherical nanoindentation of
polymeric thin films to analyze the deformation field behavior as
a function of stress, film thickness, and material constitutive
model. Although FEA simulations are continuum-based and
therefore inherently independent of length scale, such a study
provides important information about the changes in stress and
strain fields, and thus estimated mechanical properties, as mea-
sured via nanoindentation when the polymer film thickness is
reduced to the nanoscale and/or is idealized as a (non)linear
elastic material. In practice, structural length scales (≥10nm)
other than polymer film thickness exist, such as block copolymer
domain size, crystalline diameter in semicrystalline polymers,
second-phase particle size in polymeric nanocomposites, and
distance between chemical or physical crosslinks in amorphous
or hydrated (bio)polymer networks. Therefore, it is useful to
consider the effects of finite thickness and material nonlinearity
separately from these structural aspects of polymeric films that
will affect the validity of a continuum-based mechanical
analysis.

2. Simulation details

Fig. 1 shows the finite element model mesh and boundary
conditions for the simulations reported herein. This model
included 34,476 nodes and 34,104 four-noded axisymmetric
elements, and was analyzed via the general purpose finite
element software ABAQUS [19]. Both the material films and the
spherical indenter exhibit axial symmetry, and are thus
considered in a two-dimensional simulation. The indenter was
modeled as an infinitely rigidmaterial of radiusR=25nm, which
is consistent with the nominal apex radius of Si3N4 pyramidal
cantilevers used in SPM-enabled nanoindentation [4], while the
material films are modeled using linear elastic and, separately,
hyperelastic constitutive relations for film thicknesses of 50,
175, 300, 600, and 1000nm. The distal conical portion of the
cantilevered indenter is not modeled in these simulations, as the
typical maximum indentation depth implemented in related
experiments [4] and in these simulations is less than R [4]. The
contact between the indenter and the material film is assumed to
be frictionless, and the nodes at the film/substrate interfaces are
modeled as rigidly fixed, based on the assumption that the
polymeric film is rigidly bonded to an infinitely rigid (or
comparably so) substrate. A displacement controlled analysis is
implemented to simulate the nanoindentation, and the output



Fig. 2. Finite element response of elastic film of thickness t=1000nm and
E=0.5MPa: (a) Hertzian prediction of spherical elastic contact given by Eq. (1)
is obeyed. (b) Von Mises stress distribution at maximum depth h=20nm.

Fig. 3. Von Mises stress distributions for films of varying thickness t and
E=10MPa: (a) t=1000nm, h=20nm; (b) t=600nm, h=20nm; (c) t=50nm,
h=17.5nm.
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extracted from the simulations is that of the loading force P
corresponding to the indentation depth h at each timepoint;
quasistatic loading is thus assumed. The maximum indentation
depth hmax for all simulations is 20nm, except for the model for
t=50nmwhere hmax=17.5nmwas the maximum depth at which
the FEA stiffness matrix converged for the given mesh density,
element type/shape function, and constitutive relation
employed.

The Hertzian elastic contact model is the most widely used
closed-form solution to calculate E of any material under gene-
ralized contact conditions. For small indentations (hmax≪R),
the paraboloidal indenter is well approximated as a sphere for
which the Hertzian elastic solution exists. The relation between
the depth of a spherical indenter and the corresponding applied
load was formalized by Sneddon [20] based on the Hertzian
formulation:

Psphere ¼ 4
3

E
ð1−m2Þ

ffiffiffiffiffiffiffiffi
Rh3

p
ð1Þ

where ν is the Poisson's ratio of the sample (equal to 0.5 for
ideally incompressible materials, and assumed to be 0.49 for
mathematical tractability in the simulations herein). Thus E can
be calculated directly from the output P–h response and chosen
simulated R for a given material constitutive relation via Eq.
(1), although it is important to note that Eq. (1) tacitly assumes
linear elastic behavior of a semi-infinite, indented material. The
representative strain level ε applied to the material has been
approximated in several forms, including: h / t, h /R and, most
accurately, as

e ¼ 0:2a=R ð2Þ

where a is the radius of contact at the material surface [21]. The
fraction of indentation depth h to film thickness t sampled is
not an actual strain and is termed hereafter as f, where the
diameter of the elastically deformed contact zone and thus the
propensity for artifactual stiffening in the P–h response due to
the underlying substrate increases with increasing f.

The polymeric films considered herein are modeled as both
linear elastic and, separately, hyperelastic materials. For the
linear elastic case, three values of E were considered: E1=100,
E2=10, E3=0.5MPa. These values are based on the experi-
mental results from Thompson et al., obtained via SPM-enabled
nanoindentation (Si3N4 cantilever of R=25nm) for thin film
polyelectrolyte multilayers adhered to rigid (glass or polysty-
rene) substrates [4]. For the hyperelastic case, the strain energy



Fig. 4. Comparison of experimental and calculated E for linear elastic films as a
function of film thickness t and constant indentation depth h=20nm: (a)
E=100MPa; (b) E=100, 10, and 0.5MPa; (c) Deviation from Hertzian
prediction of 3 /2 power law in Eq. (1) for t=50nm and E=100MPa.
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function W for incompressible materials was postulated by
Mooney [22] and is given by

W ¼ C1ðI1−3Þ þ C2ðI2−3Þ ð3Þ

where C1 and C2 are the elastic constants and I1 and I2 are the
first and second invariants of the Cauchy–Green deformation
tensor [23].

Based on the above formulation, for an incompressible
material with infinitesimal indentation depth h the Young's
elastic modulus E can be expressed as

E ¼ 6ðC1 þ C2Þ: ð4Þ
Previous studies have shown that the widely applied

infinitesimal strain models for nanoindentation yielded substan-
tial errors in the estimated properties such as E for non-linear
elastic materials [24]. The values for the elastic constants used in
this hyperelastic analysis are C1=0.0235 and C2=0.060MPa.
These material constants are not chosen to represent a particular
polymer, but rather to assess how the film thickness t and E
independently affect the SPM-enabled nanoindentation re-
sponse for a constitutive model that is more representative of
polymeric materials than linear elastic models. The resulting
value from Eq. (4) is E=0.50MPa, which is consistent with one
of the three linear elastic cases considered, despite the clear
difference in the constitutive relations.

For a given film thickness t, there exists a critical depth of
indentation hcr that depends on the mechanical properties of both
the film and substrate, beyond which the force P required to
attain a depth h increases due to the proximity of the film/
substrate interface. This violates the semi-infinite film thickness
(t≫hmax, R) assumed by the Hertzianmodel, but hcr is not easily
identified a priori [3,25]. A semi-analytical correction for this
artifactual increase in stiffness due to finite film thickness
proposed by Dimitriadis et al. [5] as:

P ¼ 16
9
E

ffiffiffiffiffiffiffiffi
Rd3

p
½1þ 1:133vþ 1:283v2 þ 0:769v3

þ 0:0975v4� ð5Þ
where

v ¼
ffiffiffiffiffiffi
Rd
h

r
ð6Þ

is the correction factor due to finite thickness. The maximum
film thickness for which this correction is applicable is stated by
Dimitriadis et al. as hb12.8R [5]. This restriction is based upon
the assumption that the material behaves in a linear elastic
manner for maximum strains less than or equal to 10%, which
may or may not be true for a given material. According to this
arbitrary limit, however, the thickness correction would apply
for film thickness tb320nm in the current study. Eq. (5) can
then be used to calculate E for films of ostensibly identical or
systematically varied mechanical properties, of varying thick-
ness. Mahaffy et al. [16] have shown that the value of the
Poisson's ratio also affects the calculation of E when indenting
samples of finite thickness. Experimental results [16] have



Fig. 5. Comparison of E calculated via Eq. (1), assuming either a linear elastic or
a hyperelastic constitutive model (Mooney Rivlin, Eq. (4)) for E=0.5MPa.

Fig. 6. Effect of indenter radius R on calculated E for an input modulus of
10MPa: (a) as a function of the fraction of film thickness sampled f=h / t; (b) for
a linear elastic film of t=50nm indented to a depth h=12.5nm with indenters of
nanoscale and microscale radii. Note that the indenter of microscale radius
significantly overestimates E due to substrate proximity effects.

239B. Oommen, K.J. Van Vliet / Thin Solid Films 513 (2006) 235–242
shown that as the Poisson's ratio increases from 0.3 to 0.5, the
depth hcr at which the underlying stiff substrate artifactually
stiffens the measured response actually decreases. This means
that due to the high Poisson's ratio of polymers, even in mi-
crometer-scale thick areas of experimental samples such as
living cells, the Hertz model can fail to predict the elastic
properties accurately.

3. Results

3.1. Effects of film thickness

Fig. 2a shows the variation of load P and depth h on a log10
scale for a simulated film of t=1000nm and E=0.5MPa. The
calculated slope of x=3 /2 is consistent with the power law
representation of Hertzian elastic contact (see Eq. (1)), and the
value of E calculated via Eq. (1) is within 10% of the input value
of E. This demonstrates the well-known result that for the case
of linear elastic model of given E and sufficient film thickness t,
the film-indenter contact can be well approximated by the
Hertzian model. Note that the average or von Mises stress
contours are confined well within the film as shown in Fig. 2b.
Fig. 3a–c shows the von Mises stress distributions for the linear
elastic case (E=10MPa) and a range of film thickness t=50,
600, and 1000nm. These simulations demonstrate the transfer
of stresses through the thin films; for this value of E, the stresses
are confined to ∼10% of t for sufficiently large t (t ∼300nm,
corresponding to a maximum nominal strain of 0.40). That is for
a given critical thickness, E can be predicted to within 15% of
the actual value via application of Eq. (1) and assumption of a
linear elastic constitutive relation. When the thickness is below
this critical value, the underlying rigid substrate induces over-
prediction of E, as shown in Fig. 4 a.

Fig. 4a shows the (linear elastic) E calculated from the
P–h response via Eq. (1), as a function of t. This trend de-
monstrates the overestimation of E when the Hertzian model is
assumed for finite film thickness and that, as t decreases with
respect to hmax, there results a significant increase in calculated
E with respect to the elastic modulus dictated by the simulated
constitutive relation (i.e., the input or actual E of the indented
material). As expected for a linear elastic analysis, this trend is
similar for all values of E considered (Fig. 4b). This cor-
roborates the fact that the value of E increases as the thickness is
reduced for any value of E chosen. Fig. 4c indicates the
corresponding deviation from the Hertzian contact power law
value of x=3 /2. For the simulated film of E=100MPa, x=3 /2
for t=1000nm, but increases to x=5 /3 when the thickness is
reduced to 50nm. This deviation from the theoretical value
underscores the lack of applicability of a model originally
intended for macro-scale contact mechanics for linear elastic,
semi-infinite material dimensions.
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3.2. Effects of elastic nonlinearity

In actuality, many polymericmaterials exhibit highly nonlinear
deformation even within the elastic regime [27]. This necessitates
the need for understanding the nanoindentation P–h response
through modeling of nonlinear constitutive relations. Here, the
Mooney–Rivlin model has been applied to consider any
differences in the stress transfer to the film/substrate interface
and therefore in the associated P–h response as a function of
elastic nonlinearities. Clearly, the overestimation ofE due to finite
t is very similar to that observed for the linear elastic case. These
data demonstrate that elastic contact analysis with constitutive
relations more representative of polymers predict the same effect
of finite film thickness. Fig. 5 shows that the calculated E is close
to the bulk or input value for tN tcr=200nm and maximum
indentation depth hmax=20nm (εmax=0.40). In addition, although
the overprediction of E is observed for both linear elastic and
hyperelasticmodels, Fig. 5 shows that the critical film thickness tcr
at which this overprediction occurs actually increases with respect
to the linear elastic case for a given E and ε. In other words,
nonlinear elastic deformation relaxes the film thickness constraint.

3.3. Effects of indenter radius

Fig. 6a shows the variation of E with respect to the dimen-
sionless parameter f=h / t. While indenting samples that are of
Fig. 7. Demonstration of substrate proximity effects on overestimation of thin film
modulus of 10MPa and indentation depth of 12.5nm; (b) Corresponding load–depth
Mises stress distribution for film thickness t=50nm and h=12.5nm for (c) R=2500
nanoscale thickness (∼50nm) or while indenting samples to
hN0.1 t, the calculated E increases by more than a factor of two
for R=2500nm when compared to R=25nm, for the same value
of f. Even though the strains induced by the indenter with larger
radius are much lower when compared to the strains induced due
to smaller indenter [5], hence inducing lower stresses on the
films, the calculated E are very high for larger radii. Fig. 6b
shows the difference in modulus when a 50nm thick sample is
indented to a depth of 12.5nm using indenters of radii R=25 and
R=2500nm. Fig. 7a shows the difference in calculated E when
compared to an input or actual value of E=10MPa. Fig. 7b
shows the P–h response for the bulk and t=50nm samples when
indented to h=12.5nm. The stresses induced by the substrate
proximity are mainly responsible for overprediction of E, as
shown by Fig. 7b–d. This is clearly evident from theMises stress
profile in Fig. 7c and d, which show the von Mises stress profile
where spheres of R=25 and R=2500nm are used to indent a
sample of t=50nm to an indentation depth of 12.5nm. When
indenting a sample to same indentation depth, the stresses
induced by larger R (2500nm) are lower compared to the smaller
R (25nm). However, the transfer of these stresses to the
underlying substrate from larger indenter radii is increased
significantly because the contact zone of elastic deformation is
correspondingly larger. This very important fact brings out a
unique correlation between the indenter geometry and shape of
the stress contours for a given film thickness. As the indenter
E, accentuated by the use of large indenter radii: (a) Calculated E for an input
(P–h) response compared to that of a bulk sample of same input modulus; Von
nm; and (d) R=25nm.



Table 1
Effect of increase in f on contact strain ε and predicted E expressed as a function
of indenter radius R

t [nm] f R [nm] ε Einput [MPa] Overestimation of E [%]

18,000 0.03 2500 11.69 10 6
9000 0.07 2500 13.49 10 16
5250 0.11 2500 13.98 10 32
1500 0.40 2500 38.86 10 255
1000 0.02 25 28 10 10
600 0.03 25 28.29 10 12
300 0.07 25 28.26 10 16
175 0.11 25 30.25 10 24
50 0.35 25 43 10 89
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geometry increases for a given indentation depth and film
thickness, the stress distribution becomes flatter and asymmet-
rically distributed along the lateral direction with respect to the
loading axis (see Fig. 7d). As films of nanoscale thickness that
are strongly adhered to the substrate therefore resist lateral
deformations during the indentation process, indentations of
larger R induce comparably larger stress distributions within the
film that approach and are distorted by the film/substrate
interface. Thus, the P–h response from which E is calculated is
affected at smaller h.

3.4. Applicability of Hertzian modifications

Certain semi-analytical models such as that ofDimitriadis et al.
[5] directly consider the effects of finite thickness on mechanical
properties estimated from the P–h response. Fig. 8 shows the
comparison of the classical Hertzian model (Eq. (1)) with the
Dimitriadis et al. model for a linear elastic material, indicating that
calculated E increases with respect to “known” or independently
assessed measures of E as t decreases. When compared to the
Hertzian model, the Dimitriadis et al. model is superior in cal-
culating film E. However, below a certain film thickness, the
Dimitriadis et al. model also overestimates E. This comparison is
important for two reasons. First, this shows that amodel originally
developed for macroscopic contact mechanics can be extended to
linear elastic samples of finite thickness when a correction factor
(of which the Dimitriadis et al. [5] and Mahaffy et al. [16] are two
models) is used. Second, Fig. 7 shows that, even for linear elastic
simplifications of polymer mechanical response, thickness-
corrected Hertzian models also overestimate film E as t is reduced
to the nanoscale.

Table 1 shows the effect of f on the amount of error in
calculated E due to either large indentation depth or reduced film
thickness. The results are tabulated for two indenter radii. Both the
strain ε as well as simulated E increases as f increases. The error
Fig. 8. Comparison of Hertzian and Dimitriadis models of elastic modulus
calculation for input E=100MPa. Identical trends were observed for E=10 and
0.5MPa.
becomes significantly high for fN0.1,with percent error inE equal
to 255% for f=0.4 when R=2500nm and 89% for f=0.35 when
R=25nm. The significant increase in both ε as well as E for
R=2500nm are due to the manner in which the plastic zone
redistributes around the indentation zone, as shown in Fig. 7c.

Finally, it should be noted that these results include several
simplifying assumptions, including axisymmetric (rather than
fully three dimensional) deformation and neglect of linear/
nonlinear viscoelastic effects.

4. Discussion

Recent engineering advances in materials processing have
enabled fabrication of films with thickness that are on the order
of 100nm and less. These films have a wide range of ap-
plications including biological engineering substrata for funda-
mental studies of mechanically influenced cell function or for
microelectronic insulators [7]. These examples are a small subset
of emerging applications that require accurate mechanical
characterization of the mechanical properties of polymeric thin
films. The critical issue addressed in this study is the validity of
the Hertzian model in estimation of E for polymeric thin films.

Fig. 3a–c shows clearly that the Hertzian model is valid
below a critical film thickness tcr for a given depth of indentation
hmax and strain ε, provided that the film is a linear elastic solid.
This immediately implies that application of the Hertzian model
towards analysis of nanoindentation P–h responses can
accurately estimate E for a given film thickness t that is de-
formed less than a critical depth of indentation hcr. For the range
of E considered, the critical thickness is approximately 20nm,
beyond which measured values of E can be within 15% of the
input or actual bulk value. Outside of these conditions, there are
several reasons for overprediction of E in application of the
Hertzian model. These parameters are discussed below in the
context of the simulated results.

While considering films which are of 1–100nm in thickness,
it is difficult both experimentally and theoretically to obtain
precise calculated values of E with an indentation depth that is
10% of the film thickness (0.1nmbhmaxb10nm). This is
demonstrated by the consideration of films for t=50nm in the
present simulations; the power-law slope x increases from the
analytically predicted value of 3 /2 to 1.6 when t is decreased
from 1000 to 50nm (Fig. 4c), and thus calculated E exceeds the
actual value. The reason for this deviation is clear from Fig. 3,
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where it is seen that the stress field is not confined but rather
includes the film/substrate interface. This shows that finite thick-
ness can alter the stress and displacement field behavior, hence
leading to overestimations of E. This becomes critical for ap-
plication of nanoindentation experiments in applications of poly-
meric films as cell substrata, as it is known that substratum
compliance contributes significantly to cell morphology and phy-
siology [4,28]. The same trend that is observed for the linear
elastic case is also seen for the hyperelastic case, where (material)
elastic nonlinearity can be incorporated to simulate polymeric
responses more accurately. Even for the case of the hyperelastic
model chosen, the Hertzian prediction of E exceeds the actual
value by a factor of two below a certain tcr. Themaximum strain in
the loading direction for the case ofE=0.5MPa is shown in Fig. 5
for both linear elastic and hyperelastic models: the tcr for hy-
perelastic case is reduced to 200nm compared to linear elastic
model (tcr=300nm). Thismeans that if Hertzian elastic analysis is
applied to analyze the mechanical properties of hyperelastic thin
films, these films can be indented to a greater fraction of the film
thickness f (and to a larger ε) without inducing overpredictions
due to finite film thickness.

Fig. 7c–d demonstrates that even though indenters with
larger radii R induce smaller indentation strains for a given
indentation depth h, the transfer of these stresses to the substrates
for large R is much more pronounced. Perhaps counterintuitive-
ly, this indicates that lower effective contact strains – even those
within the elastic limit of the film material – do not necessarily
imply more accurate measurements of E for polymeric thin
films. In fact, the overestimation ofE increases with increasing R
for hN tcr as shown in Fig. 6a–b.

Despite this potential artifact of large indenter radii R, in order
to apply strains within the linear range of material deformation
during nanoindentation, it is often necessary to use probes with
large radius, e.g., micrometer-scale spheres for nanoscale film
thicknesses [5]. This is often not feasible with Si3N4 or Si
cantilevers suitable for SPM imaging, as the cantilever tips of
such probes exhibit R on the order of 25nm and thus induce
εN10% for indentation depths hb20nm. For such probe geo-
metries, the Hertzian model would apply for tN300nm, below
which E values are overestimated by a factor equal to or greater
than 20% as shown in Fig. 4a. This overestimation for decreasing
t is due to the fact that the strains exceed the infinitesimal range
and thus invalidates the small-strain approximations inherent in
the Hertzian model, independent of finite film thickness effects.
However, it is important to note that this overestimation as shown
in Table 1 is not predicted to exceed 89% for nanoscale films,
indicating that changes greater than this could be attributed either
to real microstructural changes or to other experimental/material
artifacts other than film thickness t.

5. Conclusions

Together, these systematic simulations of contact-enabled
mechanical characterization for compliant thin films indicate
three key features. First, in order for elastic modulus E to be
accurately determined for any polymer film thickness t, strain
magnitude ε, and fraction of film thickness sampled f, analytical
models must include both finite film thickness and nonlinear
elastic deformation. Second, even when ε and h / t exceed
nominal levels required for small strain and semi-infinite
thickness approximations to apply, linear elastic and hyperelas-
tic descriptions of these polymer thin films indicate an artifactual
increase on the order of a factor of two. Third, although the
choice of large indenter radius R is suitable to minimize contact
strain ε, large R also confers large strain volumes within the film
that exacerbate finite film thickness effects and can thus be
counterproductive in SPM-enabled estimates of mechanical
compliance for nanoscale polymeric films.
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