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Abstract

Several composites comprise material phases that cannot be recapitulated ex situ, including calcium silicate hydrates in cementitous materi-
als, hydroxyapatite in bone, and clay agglomerates in geomaterials. This requirement for in situ synthesis and characterization of chemically
complex phases obviates conventional mechanical testing of large specimens representative of these material components. Current advances in
experimental micro and nanomechanics have afforded new opportunities to explore and understand the effect of thermochemical environments
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n the microstructural and mechanical characteristics of naturally occurring material composites. Here, we propose a straightforward application
f instrumented indentation to extract the in situ elastic properties of individual components and to image the connectivity among these phases
n composites. This approach relies on a large array of nano to microscale contact experiments and the statistical analysis of the resulting data.
rovided that the maximum indentation depth is chosen carefully, this method has the potential of extracting elastic properties of the indented
hase which are minimally affected by the surrounding medium. An estimate of the limiting indentation depth is provided by asssuming a layered,
hin film geometry. The proposed methodology is tested on a “model” composite material, a titanium-titanium monoboride (Ti–TiB) of various
olumetric proportions. The elastic properties, volume fractions, and morphological arrangement of the two phases are recovered. These results
emonstrate the information required for any micromechanical model that would predict composition-based mechanical performance of a given
omposite material.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The mechanically significant phases of several composites,
ncluding calcium silicates in cementitious materials, hydroxya-
atite in bones, and clay agglomerates in geomaterials, cannot be
dequately reproduced ex situ in large specimens. This restricts
he use of conventional mechanical characterization approaches
uch as uniaxial tension/compression or resonance frequency.
s a consequence, the intrinsic (and thermochemically altered)
echanical properties of such phases are essentially unknown.
he advent of instrumented indentation [14,40] provides an
nprecedented opportunity to measure the mechanical response
f these phases at the appropriate length scale (∼ 10−6 m). Such
ata is a critical requirement of multiscale mechanical modeling
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efforts that would predict the composite mechanical perfor-
mance for a given composition and microstructure.

It is now well established that the response of a material
upon the reversal of contact loading provides access to the elas-
tic properties of the indented material (for recent reviews see
Refs. [6,31]). The indentation technique consists of establishing
contact between an indenter of known geometry and mechan-
ical properties (typically diamond) and the indented material
for which the mechanical properties are of interest, and subse-
quently acquiring the continuous change in penetration depth
h as a function of increasing indentation load P (P–h curve).
Typically, the extraction of properties is achieved by applying
a continuum scale mechanical model to derive two quantities,
indentation hardness H and indentation modulus mechanical
M [2,11,30,39]:

H
def= P/Ac (1a)
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Fig. 1. Principles of indentation testing.

M
def=

√
π

2

S√
Ac

(1b)

All quantities required to determine H and M are directly
obtained from the P–h curves, with the exception of the pro-
jected area of contact Ac. Chief among these are the maximum
applied force Pmax and corresponding maximum depth hmax,
the unloading indentation stiffness S = dP

dh
|h=hmax , and residual

indentation depth hf upon full unloading of the material surface
(Fig. 1). The contact area Ac can also be extrapolated from the
maximum depth hmax [17,30,31]. Furthermore, M can be linked
to the elastic modulus E of the indented material by applying a
linear elastic model to the data [15,36]. The methodology how-
ever, is currently restricted to monolithic systems, and little has
been reported for indentation on composite materials, a cate-
gory composing the majority of solids. Application of Eqs. (1a)
and (1b) to multiscale composites poses several difficulties, as
the underlying analysis relies on the self-similarity of the inden-
tation test; this strictly holds only for homogeneous materials
[3].

Herein, we explore the following question: is it possible
to apply continuum indentation analysis to structurally hetero-
geneous materials and, if so, how? We propose a straightfor-
ward extension of instrumented indentation analysis for multi-
scale composites, which by design circumvents the interaction
between the individual phases present in the microstructure. In
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umes and microstructural volumes are of the same order (see
Fig. 1). This lack of length scale separation obfuscates the use
of continuum analysis to translate indentation data into mean-
ingful mechanical properties. We therefore propose a means to
reduce this complexity through careful choice of indentation
length scales that enable application of continuum indentation
analysis.

2.1. Indentation length scales

Continuum indentation analysis is premised on spatially
homogeneous mechanical response and, therefore, constitutive
relations between stress and strain that are independent of the
length scales of analysis such as the indentation depth h [3]. The
representative volume element (RVE) of homogeneous mechan-
ical response and characteristic size L must obey to the length
scale separability condition:

d � L � (h, a, D) (2)

where (h, a) are the indentation depth and the indentation radius,
respectively, that define the order of magnitude of the variation of
the position vector x, D is a characteristic microstructural length
scale, and d is the characteristic size of the (largest) microstruc-
tural/mechanical heterogeneity contained in the RVE. Provided
that Eq. (2) is satisfied, an indentation experiment executed to an
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articular, we present a grid indentation technique that, under
ertain restrictions, can provide both quantitative and qualitative
nformation about the morphology and mechanical properties of
ndividual phases comprising the material. The large amount of
ata acquired is treated in a statistical sense. That is, statistical
nalysis of results provides access to the mechanical proper-
ies and volumetric proportions of all phases comprising the

aterial, and additionally the spatial representation of mechan-
cally distinct phases elucidates the morphological arrangement
f different phases. This is illustrated here for Berkovich inden-
ation in a “model” binary composite material: titanium-titanium
oride (Ti–TiB).

. Identifying critical length scales: thin film analogy

The literature on indentation on composite materials includes
nly few very recent publications [8,9,12,19,25]. This limited
ctivity is not altogether surprising, given the complexity of the
echanical response of a material system when indentation vol-
ndentation depth h gives access to the material properties that
re characteristic of the material at a length scale of L (see Fig.
). Most indentation solutions are based on the self-similarity
pproach, derived from the infinite half-space model (which by
efinition has no length scale limit) that assumes spatially uni-
orm mechanical properties (see e.g., Ref. [6]). Therefore, the
roperties extracted by means of an inverse analysis from inden-
ation data are averaged quantities characteristic of a material
ength scale defined by the indentation depth h or the indenta-
ion radius a. A good estimate is that the characteristic size of
he material domain sensed by an indentation is of the order of

ax(h, a); roughly 3h for Berkovich indentation and h for the
orner cube. Given the self-similarity of the indentation contact,
he choice of indentation depth directly determines the length
cale of the material RVE. Analysis of composite materials
equires consideration of the case in which the microstructural
ength D is of the order of the indentation depth h, for which
he classical tools of continuum indentation analysis would not
pply.
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2.2. Intrinsic phase properties: h � D

We thus aim to derive a critical indentation depth below which
microstructural length scales do not interfere significantly with
the indentation response, such that indentation data acquired to
such a depth provide access to the intrinsic properties of the
material comprising that RVE of the microstructure. The sim-
plest geometrical representation of a heterogeneous binary (two-
phase) composite system is a layered medium, which is in fact
the most severe geometric heterogeneity that can be investigated
via indentation [12]. Such layered systems have been investi-
gated in some detail in the context of thin films on substrates,
one of the most popular current applications of nanoindentation.
In the case of this thin film analogy, we equate film thickness
t with the characteristic length scale of the microstructure D
in Eq. (2), and explore thin film indentation models to identify
a critical indentation depth below which the properties of the
homogeneous phase are measured accurately. We restrict our
analysis here to the indentation stiffness, film stiffness Ef , but
similar concepts can be extended to the film hardness Hf .

The majority of models for thin film indentation rely on phe-
nomenological arguments or finite element simulations, and tend
to relate the composite modulus Eeff to the elastic moduli of the
film Ef and of the substrate Es:

Eeff = Ef + (Es − Ef )Ψ (3)
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by solving a Fredholm integral equation of the second kind with
a continuous symmetrical kernel which depends on the bond-
ing conditions. With the aid of finite element calculations, Chen
and Vlassak [5] compared the theoretical results of Yu et al. [42]
with numerical results and showed very good agreement. Perriot
and Barthel [32] proposed a method relying on the work by Li
and Chou [26], in which they calculated the Green’s function
for a coated substrate. The stress/strain relation of Li and Chou
could not be inverted and thus not implemented easily for con-
tact problems. Using the auxiliary fields introduced by Sneddon
and Ting [37,41], however, Perriot and Barthel have reformu-
lated this solution to allow inversion, and have found that the
load–displacement response is independent of indenter geome-
try and modulus mismatch. This response is very much like that
provided by Gao et al. [16], and is also in good agreement for the
modulus mismatch ratio in the range 0.5–2. Perriot and Barthel
have empirically extended Eq. (4) to a wider range of modulus
mismatch ratios (Es/Ef = 0.01–100):

ΨPB =
[

1 +
( t

a
k
)n

]−1

(5)

where a is the contact radius, n is an empirical constant (n ∼
1.27) and k is defined by:

log(k) = −0.093 + 0.792 log

(
Es

E

)
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here Ψ is a weight function that depends on the ratio of inden-
ation depth to film thickness h/t. In fact, as Ψ → 0, the effect
f the substrate is eliminated and Eeff → Ef . Several models
ave been proposed in the literature to estimate Ψ and quan-
ify the effect of the substrate on the composite response. By
sing the Hankel’s transform method, Li and Chou [26] calcu-
ated the Green’s function for a coated substrate and evaluated
he displacement, stress field and load–indentation depth rela-
ion of the thin film/substrate system under an axisymmetrically
istributed contact load. King [24] studied the effect of the sub-
trate on the global response using finite element simulations,
hereas Gao et al. [16] devised a first-order rigorous moduli-
erturbation method to derive a closed-form solution for the
ontact compliance of an uncracked film/substrate composite:

G = 1 − ΨG = 2

π
tan−1

( t

a

)

+
[

(1 − 2ν)
( t

a

)
ln

(
1 + (t/a)2

(t/a)2

)
− (t/a)

1 + (t/a)2

]

× [2π(1 − ν)]−1 (4)

n this approach, based on a perturbation calculation of the elas-
ic energy of a coated substrate indented with a flat punch of
adius a, the assumption is made that the mechanical properties
f both materials do not differ widely. The model was validated
y Chen and Vlassak [5] by means of finite element analysis,
howing that the model is correct for moduli mismatch ratio in
he range 0.5–2, deviating from reality in cases when the contrast
s higher. Yu et al. [42] have considered the elastic solution of an
xisymmetric mixed boundary value problem and the results (for
pherical, conical, or cylindrical flat punch contact) are obtained
f f

(6)

qs. (3) to (6) show a fair degree of consistency and suggest
hat substrate effects are negligible for stiffness mismatch ratio

s/Ef ∈ [0.2, 5] as long as the indentation depth h (or contact
adius a) is smaller than or equal to 10% of the film thickness
. This is illustrated in Fig. 2 in which the critical a/t-ratio,
a/t)10%, for which the error in the modulus estimation, (Eeff −

f )/Ef , does not exceed ±10%, is shown as a function of the
odulus mismatch ratio Es/Ef .

ig. 2. Critical a/t-ratio vs. Es/Ef as predicted by Perriot and Barthel [32] for
hich the composite modulus, Eeff, is within 10% of the film modulus, Ef . a is

he contact radius and t is the thickness of the layer.
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The above models have been developed for a very specific
geometric arrangement of two phases, but are generally con-
sidered to be a very good first-order approximation for more
general morphologies. The only available information for par-
ticulate systems in the literature is a finite element study by Durst
et al. [12], who performed numerical investigations of hardness
for overlaying-substrate systems having a yield strength ratio
of 0.5–2. Three different geometries are considered: a layered
medium, a square particle embedded in a semi-infinite medium,
and a semi- infinite fiber embedded in an semi-infinite medium.
These results suggest that the thin film geometry yields the most
severe restrictions on the depth of indentation and, therefore,
use of the thin-film analogy to define a critical indentation depth
with respect to the size of the heterogeneity appears to be a
conservative choice.

In summary, in order to apply continuum indentation anal-
ysis to heterogeneous systems, the indentation depth should be
at most 1/10 of the characteristic size of the microstructure D
in order to access phase properties. This rule of thumb, also
known as 1/10-rule of Buckle [4], is a rough first estimate and
in cases where the contrast between the mechanical proper-
ties of the two phases becomes significant (( Es

Ef
) /∈ [0.2, 5]) the

method tends to be too relaxed – at higher indentation depths,
the indentation response interferes with microstructure, and spe-
cial care should be taken in the interpretation of the indentation
results.
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Fig. 3. Schematic of the principle of the proposed massive array or grid inden-
tation technique for heterogeneous materials. Bottom: at low indentation depths
(h � d) the individual constituents can be identified giving rise to multimode
ditributions. Top: at large indentation depths (h � d) the properties of a homog-
enized medium are obtained.

the probability of encountering one or the other phase is equal
to the surface fraction occupied by the two phases on the indenta-
tion surface. Provided that a similar distribution is found equally
on other surfaces, the surface fraction can be assimilated with
the volume fraction of the two phases present in the (isotropic)
material. Consider next an indentation test performed to a maxi-
mum indentation depth that is much larger than the characteristic
size of the individual phases, h � D (Section 2.3). It is readily
understood, by letting D = d in the scale separability condition
of Eq. (2), that the properties extracted from such an indentation
experiment are representative in a statistical sense of the average
properties of the composite material.

This simple gedanken experiment has all the ingredients of
statistical indentation analysis that need to be performed when
it comes to composite materials. The key results of such anal-
ysis are distributions and their derivatives (e.g., histograms or
frequency diagrams) of mechanical properties determined by a
large number of indentation experiments at a specific scale of
material observation defined by the indentation depth. Generally
speaking, small indentation depths (h < 0.1D) provide access
to mechanical phase properties, and potentially to volume frac-
tions:

fJ = NJ

N
;

n∑
J=1

NJ = N (7)
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.3. Composite properties: h � D

To complete the thin film analogy, it is useful to provide
n estimate for the indentation depth that gives access to com-
osite properties. The finite element simulations of Durst et
l. [12] suggest that the response reaches an asymptotic val-
es for a/t > 2. Equating t with D, it is possible to estimate
hat an indentation depth of h > 2D cot θ (with θ the equivalent
one semi-angle; see Fig. 1) should give access to composite
aterial properties. Hence, it is at indentation depths h between

hese two limiting cases, 0.01 < h/D < 2 cot θ that microstruc-
ure is expected to strongly affect the measured indentation
esponse.

. Massive array indentation experiments

.1. Gedanken experiment

Consider a material to be composed of two phases of differ-
nt mechanical properties and characterized by a length scale D.
f the indentation depth is much smaller than the characteristic
ize of the phases, h � D (Section 2.2) then a single indenta-
ion test gives access to the material properties of either phase 1
r phase 2. If, in addition, a large number of tests (N � 1) are
arried out on a grid (Fig. 3) defined by a grid spacing � that is
arger than the characteristic size of the indentation impression,
o to avoid interference in between individual indentation tests,
nd much larger than the characteristic size of the two phases
�
√

N � D), so that the locus of indentation has no statistical
ias with respect to the spatial distribution of the two phases,
here NJ is the number of indentations on material phase J, that
an be identified by the difference in material properties; that
s fJ is the volume fraction of a mechanically distinct material
hase. In turn, greater indentation depths (h > 2D cot θ) provide
ccess to homogenized material properties of the composite.
his principle is demonstrated in Fig. 3. Finally, a mapping of
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mechanical properties allows one to identify characteristic mor-
phologies within the resolution defined by the array spacing.

3.2. Deconvolution of mechanical response distributions

The above gedanken experiment is based on the premise that
the two phases have two properties of sufficient contrast that
these can be separated in small-scale indentation tests. Compos-
ite materials are generally more complex, requiring the use of
some elementary statistics relations to analyze the indentation
data. Let us assume that the distribution of the mechanical prop-
erty x = M of each phase J is best approximated by the normal
or Gaussian distribution:

pJ (x) = 1√
2πs2

J

exp

(
− (x − µJ )2

2s2
J

)
(8)

where the mean µJ is the arithmetic mean of all NJ values of
each phase, while the standard deviation, sJ , or the root mean
square deviation, is a measure of the dispersion of these values:

µJ = 1

NJ

NJ∑
k=1

xk; s2
J = 1

NJ − 1

NJ∑
k=1

(xk − µJ )2 (9)

The case of a single phase, n = 1, corresponds to the case of a
homogenous material, for which mean value and standard devi-
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total number of experiments; hence:

3n − 1 ≤ m < N (13)

In the application of the deconvolution technique to composites,
the number of phases n is generally known in advance. Indeed,
in small-scale indentation (h � D) n is determined by the num-
ber of distinct chemical phases (e.g., those identified by X-ray
diffraction) and/or morphological units (e.g., those identified by
optical or electron microscopy) that comprise the microstruc-
ture. In turn, for the large-scale indentation response (h � D),
n = 1 represents the composite material.

4. Experimental validation of massive array indentation

To validate the proposed approach, we have investigated a
series of discontinuously reinforced titanium alloys containing
titanium boride (TiB) whiskers in different distributions. The
microstructural evolution and the volume fractions of the dif-
ferent phases have been studied in detail in Refs. [34] and [1],
respectively. Titanium-titanium monoboride alloys (Ti–TiB) are
currently considered as possible candidate materials for sev-
eral advanced applications, ranging from military and aerospace
applications to automobile parts. Other attractive reinforcing
materials like SiC, C, or Al2O3 lead to the formation of reac-
tion products at the interface, which have hindered macroscopic
mechanical performance. The TiB particle reinforcement was
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tion describe the properties of the material in a statistical sense.
n the case of several phases (J = 1, n), that all follow a nor-
al distribution, and which do not (mechanically) interact with

ach other, the overall frequency distribution of the mechanical
roperty x = M obeys to the following theoretical probability
ensity function:

(x) =
n∑

J=1

fJ pJ (x) (10)

here fJ is the volume fraction of phase J subjected to the
onstraint:
n

=1

fJ = 1 (11)

ence, there is a total of 3n − 1 unknowns in the problem of
q. (10); (fJ , µJ , sJ ) for each phase reduced by the compati-
ility condition of Eq. (11). If empirical frequency densities or
esponse distributions are obtained by nanoindentation in form
f discrete values Pi one can determine the unknowns by mini-
izing the standard error:

in
m∑

i=1

(Pi − P(xi))2

m
(12)

here Pi is the observed value of the experimental frequency
ensity, P(xi) = ∑n

J=1 fJ pJ (xi) is the value of the theoretical
robability density function shown in Eq. (10) at point xi, and
is the number of intervals (bins) chosen to construct the his-

ogram. The number of observed values Pi should exceed the
umber of unknowns, and will obviously be smaller than the
ound to circumvent the problems associated with reactivity of
itanium [13,35], while maintaining the advantages of a metal

atrix composite (MMC) including improved specific strength,
reep, and corrosion resistance as compared to the titanium
lloy matrix. While TiB currently serves as reinforcement in
any MMCs, the elastic properties of this phase are essentially

nknown. Similarly to calcium silicate hydrates in cement-based
omposites or clay minerals in geomaterials, the TiB phase
annot be adequately reproduced in large specimens required
f traditional testing methods. The proposed grid indentation
pproach provides a unique opportunity to measure the elastic
esponse of single crystal TiB at length scales of the order of the
hase diameter, and additionally to validate the generality of the
roposed experimental approach. The extracted results will be
sed as input information in a micromechanical model that pro-
ide predictions about the elastic composite response, and then
ompared with published macroscopic elasticity measurements.

.1. Materials and methods

.1.1. Specimen preparation
Ti–TiB composites of varying volume fractions were made

y reaction sintering of Ti and TiB2 powder compacts under
ressure in a hot press in an Argon back-filled atmosphere.
ommercially available Ti powder (source: Alfa Aesar, War
all, MA) of average particle size: 28 �m and composition in
t.%: 0.23% O, 0.02% N, 0.01% C, 0.04% Fe, and 0.024% H
as used. The TiB2 powder (source: Advanced Ceramics Cor-
oration, Cleveland, OH) of average particle size: 2.4 �m and
omposition in wt.%: 30.3% B, 0.67% Zr, 0.01% C, 0.04% Fe,
nd 0.024% H was used as the source of B. The mixtures were
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Table 1
Volumetric proportions of power mixture and resulting composite solid
composition

Powder mixture (%) Composite (%)

Ti/TiB2 Ti TiB TiB2

1.000/0.000 1.00 0.00 0.00
0.882/0.118 0.70 0.30 0.00
0.763/0.237 0.45 0.55 0.00
0.408/0.592 0.00 0.92 0.08

prepared by mixing and ball milling to produce the target com-
positions of 0.0, 0.2, 0.6, and 1.0 volume fractions of TiB in the
Ti–TiB composites. Table 1 lists the powder mixture proportions
and the resulting volume fractions of Ti, TiB and TiB2 phases
in the composite. TiB is an intermediate phase between Ti and
TiB2 components in the Ti–B phase diagram and the formation
of TiB proceeds by the simple reaction:

Ti + TiB2 → 2TiB (14)

Reaction sintering was carried out at temperatures ranging
from 1100 to 1400 ◦C under varying levels of pressures for
different compositions, to yield completely reacted and trans-
formed microstructures in the final compacts. Density measure-
ments and optical microscopic observations assured the full den-
sity of the composites. Samples of size of about 10 mm × 10 mm
× 3 mm were cut by electro-discharge-machining (EDM) from
the fabricated plates. The samples were ground and successively
polished with 125-, 75-, 40-, 20-, and 10-�m metal-bonded dia-
mond disks. Final polishing was carried out with 6-, 1-, and
0.1-�m diamond pastes on a felt cloth. The samples were then
etched with Kroll’s reagent. Microstructural examination was
conducted in a Hitachi 3000N scanning electron microscope
(SEM) in secondary electron imaging mode. Some samples,
especially the high TiB volume fraction composites were repet-
itively etched to reveal the extremely fine TiB whisker bundles.
X
i
4
s
s
t

4

h
v
o
w
T
T
7
w
a
t
n
a
t

Fig. 4. Scanning electron microscopy images of etched Ti–TiB–TiB2 spec-
imens: (a) 70%Ti–30%TiB, (b) 45%Ti–55%TiB, (c) 92%TiB–8%TiB2.
Scalebars = 50 �m.

in length and about 0.6 �m in width, containing traces of Ti in
between them. The pronounced refinement in these composi-
tions relative to the other compositions has been explained (see
Ref. [34]) on the basis of powder packing, anisotropic diffusion
of B in TiB and the mean-free-path length available for TiB
whisker growth in a given powder-packed configuration. The
TiB phase coarsened significantly and lost the whisker structure
in the 92%TiB–8% TiB2 composite – the average length of TiB
-ray diffraction analyses were carried out on polished spec-
mens in a Siemens D5000 X-ray diffractometer operated at
0 kV and 40 mA and using Cu Kα radiation. High resolution
cans were made to determine accurately the integrated inten-
ities of specific diffraction peaks. The intensity profiles were
hen Gaussian-fitted to estimate the volume fractions of phases.

.1.2. Ti–TiB composite microstructural characteristics
The TiB whiskers formed by in situ reaction in the composites

ad a variety of sizes and aspect ratios that also varied with the
olume fraction of TiB itself (see Fig. 4). This is due to the nature
f powder packing, sintering times and the amount of TiB2 that
as required to form a composite of TiB in equilibrium with
i at the process temperature. Nevertheless, in all composites,
iB invariably formed as whiskers of varying aspect ratios. The
0%Ti–30%TiB composite consisted of long, needle shaped TiB
hiskers with a maximum length of about 50 �m and a width of

bout 5 �m embedded in Ti matrix. Duplex TiB whisker struc-
ure was observed in 45%Ti–55%TiB composite; the first being
eedle-shaped and long TiB whiskers of about 40 �m in length
nd about 4 �m in width, randomly oriented in Ti matrix, and
he second being bundles of short TiB whiskers of about 1.4 �m
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Table 2
Experimental program and mean ± standard deviation of indentation results

100Ti 70Ti–30TiB 45Ti–55TiB 8Ti–86TiB–6TiB2

# 1 × 100 2 × 100 2 × 100 2 × 100
P∗

max (�N) 3481 ± 2 3484 ± 2 493 ± 2 3495 ± 1
hmax (nm) 179 ± 18 137 ± 33 40 ± 11 89 ± 8
S (�N/nm) 79.94 ± 10.38 81.69 ± 55.82 47.11 ± 5.52 142.25 ± 7.36
τL/τH/τU (s) 10/5/10 10/5/10 10/5/10 10/5/10

∗ The deviation of the maximum force from the applied number is due to the spring force correction (see Ref. [22]).

phase was about 20 �m and the width was about 4 �m. The solid
solubility of B in Ti at room temperature is practically negligible
and all the B is present in the form of either TiB or TiB2.

4.1.3. Indentation parameters
We have suggested that the elastic properties of the individ-

ual components can be accessed by indentation experiments with
maximum indentation depths hmax/D ≤ 1/10.1 In nanoinden-
tation, the maximum indentation depth must be such that the
scale separability condition of Eq. (2) is satisfied:

d0 � hmax ≤ D/10. (15)

Hence, in order to obtain the properties of Ti and TiB, d0 and
D represent the characteristic sizes of, respectively, the hetero-
geneity within Ti and TiB, and D the microstructure of TiB.
The crystalline nature of titanium and titanium boride imply
d0 of the order the lattice parameters of the underlying crys-
tal structures (Angstroms). Certainly, the characteristic size of
the microstructure D is more difficult to estimate, as the size and
shape of the TiB whiskers depend directly on initial composition
and heat treatment (temperature, duration, etc.). Scanning elec-
tron microscopy images of Ti–TiB [18,34] suggest that a length
scale of DI ∼ 1 − 3 �m is characteristic of the TiB whiskers
(see Fig. 4); we adopt this limit herein. Hence, an appropriate
indentation depth that allows access to the Ti and TiB phases by
n
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phases that do not satisfy Eq. (15) is expected to be random in
nature, and should be captured by the statistical analysis method
(see Section 3.2).

Finally, we must relate the target indentation depths to the
massive array of experiments conducted on a highly hetero-
geneous material (see Fig. 3). A convenient way to achieve
on-average indentation depths of the magnitude specified by
Eq. (16) is to employ a series of load-controlled indentation
experiments. This requires some experimental iteration. For
the present material system, we found that a maximum load
of Pmax = 3500 �N yields an average maximum indentation
depth of hmax ∈ [60, 100] nm. Experiments were conducted
using a commercial nanoindenter (Hysitron, Inc. TriboInden-
ter) that applies load and acquires load and displacement via a
single capacitive transducer and initiates contact with the sample
surface via piezoactuation of this transducer. In all indentation
experiments a trapezoidal load history was prescribed, defined
by a loading segment duration τL = 10 s, a holding period at
Pmax of τH = 5 s, and an unloading segment duration τU = 10 s.
In addition, a holding period of 10 s subsequent to the initiation
of contact facilitated correction for thermal drift within the load
train of the instrumented indenter. Table 2 summarizes the details
of the experimental program.

4.2. Indentation results and statistical analysis
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anoindentation is:

max ∈ [100, 300] nm (16)

n the case of 45%Ti–55%TiB specimen, the TiB whiskers
xhibited a refined morphology and the indentation depth was
educed further to access the individual constituents, hmax 

0 nm. For smaller depths, issues related to imperfect geometry
t the indenter apex may become significant [14], and for larger
epths the “substrate effect” related to the proximity of other
hases will prohibit access to intrinsic properties of the TiB. We
hould emphasize, however, that Eq. (15) is only satisfied in an
verage sense, and that the presence of experiments within an
rray that violate these conditions is inevitable. For instance,
he length and width of TiB whiskers has been determined
reviously to vary within a specimen (especially for 45%Ti–
5%TiB), with a fraction of the whisker population exhibiting
idths D < 1 �m [18]. The error induced by indentation on such

1 We recall that the critical indentation depth would be a function of the moduli
ismatch Es/Ef . For general composites where the modulus Ef is unknown

max/D ≤ 1/10 would be a good starting point.
Indentation results were analyzed both individually and glob-
lly: An individual test gives access to mechanical information
f the indented region, and a series of tests describes the compos-
te material behavior. Typical load–depth (P − h) responses for
ndentation on the two phases (Ti and TiB) are illustrated in Fig.
. The complete set of indentations varied in terms of the max-
mum indentation depths all across the region defined by these
wo extreme scenarios, depending on the degree of interaction
etween the two phases. The majority of the responses, how-
ver, were centered around these two mean values. This will be
urther exemplified through the statistical analysis of the inden-
ation moduli presented below. Individual tests were analyzed
ased on the methodology presented by Oliver and Pharr [30]:
function of the form P = b(h − hf )m was fitted to the unload-

ng portion of the P–h curve and the indentation stiffness, S, was
valuated at maximum load, Pmax. The indentation modulus, M,
as then calculated from Eq. (1b), where the area of contact at
aximum load, Ac, was estimated according to the area func-

ion approach of Oliver and Pharr. This method is based on the
ssumption that the elastic contact height-to-indentation depth
elation [36], hc/h = 2/π equally applies to the elastic recovery
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Fig. 5. Typical P − h responses of indentations on Ti and TiB. Indents span
within this range depending on the degree of ineteraction between the two phases.

in elasto-plastic indentation characterized by a residual inden-
tation depth hf :

hc − hf = 2

π
(hmax − hf ) (17)

Since hmax and hf are measurable quantities, one can determine
the contact depth hc from Eq. (17), and subsequently the con-
tact area Ac = A(hc), where A(hc) is a polynomial function
describing the imperfect indenter tip geometry and is calibrated
by performing several indents on specimen with known proper-
ties (here, fused silica) [30]. In practice, however, the residual
indentation depth hf is very sensitive to surface imperfections.
For purely elastic unloading with a conical indenter geometry,
the P − h response follows the quadratic form of the loading
regime:

P = c(h − hf )2; h − hf = 2
P

S
(18)

such that the magnitude of hf is not required. Indeed, a combi-
nation of Eqs. (17) and (18) yields:

hc

hmax
= 1 − ε

Pmax

Shmax
(19)

where ε = 2(1 − 2/π) = 0.73. Eq. (19) is also valid for other
indenter shapes: ε = 1 for a flat punch, and ε = 0.75 for a
parabola of revolution. The main assumption incorporated in this
a
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P

Fig. 6. An atomic resolution scanning probe microcopy image of a residual
indent on a Ti–TiB–TiB2 specimen in (a) gradient and (b) three-dimensional
rendering.

with values for the power-law exponent in the range 1.2 ≤ m ≤
1.6 for a large range of tested materials [31]. By comparing
this experimental scaling relation with the closed form elastic
solutions for the flat punch (P ∝ h), conical indenter (P ∝ h2)
and paraboloid of revolutions (P ∝ h3/2) [36], it appeared that
the unloading curves are best approximated by an indenter that
behaves like a paraboloid of revolution, (m = 1.5); and the value
ε = 0.75 was recommended for Berkovich indentation. The con-
clusions are somewhat surprising because the axi-symmetric
equivalent of the Berkovich indenter is a cone, for which m = 2.
This discrepancy has since been explained by the concept of an
“effective indenter shape” [31]: During loading the localized
area around the indent gets heavily distorted and as a conse-
quence, upon unloading, permanent deformations remain on the
surface of the material. Reloading that region involves a coni-
cal surface that pushes against a concave surface. According to
Oliver and Pharr, such a phenomenon can be well approximated
by a paraboloid indenter pressed against a flat surface.

Detailed finite element simulations and experiments (see
Refs. [31,30] and references therein) have shown that Eq. (19) is
in very good agreement with the actual area of contact at maxi-
mum load, provided that there is no significant pile-up of mate-
rial at the contact perimeter. Scanning probe microscopy images
of residual indentations (Fig. 6) demonstrate that there is no
visible pile-up in the Berkovich indentation of the Ti–TiB com-
posites, suggesting that the Oliver and Pharr method would yield
r
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nalysis is that the surface area beyond the contact points con-
orms with the elasticity solutions: it assumes that the material
inks-in. The main assumption of the Oliver and Pharr method
s that the shape of the deformed solid outside the area of con-
act is elastic. This is not true when plastic deformations occur
round the indenter to form material pile-up. Indeed, Eq. (19)
annot predict hc/h > 1 which may be the source of important
rrors. The second concern about this method is that most of the
nloading curves in Berkovich indentation tests obey to a power
elation of the form:

= c(h − hf )m (20)
eliable estimates of the area of contact. The large amount of ana-
yzed indentation data was then treated in a statistical fashion.

.2.1. Mechanical response distributions
Mechanical response distributions represented as frequency

lots are used to analyze indentation data on a composite mate-
ial. For small indentation depths, h � D, such plots give rise
o multimode distributions, each peak corresponding to the

echanical manifestation of a phase.2 In order to extract elastic
roperties of the relevant phases, the deconvolution technique

2 In the case of nanoindentation on Ti–TiB systems, the mechanical phases
oincide with a chemical phase. Such a scenario provides a direct link between
hysical chemistry and mechanics.
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Fig. 7. Frequency plots of the indentation modulus for the four specimens: 100%Ti, 70%Ti–30%TiB, 45%Ti–55%TiB, and 92%TiB–8%TiB2.

presented in Section 3.2 is employed. It should be noted, how-
ever, that this process, as is true of most optimization schemes,
can result in convergence of the solution to local minima. To
overcome this problem, judicious choice of the initial values
of optimized parameters (using the frequency distributions) is
required.

Fig. 7(a) shows the distribution of indentation modulus on
a pure titanium matrix, 100%Ti. In this case, n = 1 and the
data can be fitted by a normal distribution of the form (8),
where the mean value and the standard deviation are M100%Ti =
134 ± 5 GPa (see Eq. (9)). The resulting frequency plot shows a
relatively small scatter and high repeatability, underscoring the
microstructural and mechanical homogeneity of this elemen-
tal matrix and the robustness of the indentation experiments
and analysis. Fig. 7 (b)–(d) depict the frequency plots of the
M for three Ti–TiB alloys; 70%Ti–30%TiB, 45%Ti–55%TiB,
92%TiB–8%TiB2. It is evident from the results that a second
peak increases in intensity as the boron content increases, indi-
cating the presence of a new phase, TiB. In the case of 92%TiB–
8%TiB2 a small percentage of residual, unreacted TiB2 remained
in the matrix. This was detected by our indentation results and

is manifested as a peak in the frequency plot of Fig. 7(d) with
an indentation modulus of: MTiB2 = 394 ± 13. The extracted
indentation moduli and volumetric proportions of the different
phases are summarized in Table 3. In order to quantify the effect
of the phases surrounding the RVE of indentation on the cal-
culated M of each phase, we will use as reference for MTi and
MTiB the results obtained on 100% Ti and 92%TiB–8%TiB2
specimens accordingly. The indentation moduli obtained for
Ti and TiB in the two intermediate-volume specimens, Ti–
30%TiB (MTi = 144 ± 12 GPa, MTiB = 330 ± 147 GPa) and
Ti–54%TiB (MTi = 141 ± 10 GPa, MTiB = 280 ± 70 GPa) are
within 10% of the independently measured values on M100%Ti =
134 ± 5 GPa and M92%TiB-8%TiB2 = 306 ± 22 GPa. This is in
line with the restrictions posed by finite element calculations
for the specific choice of indentation depth (see Fig. 2). Fur-
thermore, this agreement with independent measures or compu-
tationally simulated estimates of M (see Section 4.3) for these
phases supports the accuracy of the current approach in compos-
ite analysis. That is, given a reasonable choice of the indentation
depth and a large number of well-designed indentation experi-
ments, the intrinsic elastic properties of individual phases can

Table 3
Indentation moduli and volumetric proportions of the different phases (Ti and TiB) obtained from the deconvolution of the experimentally obtained frequency plots

Indentation Modulus, M [GPa] Volume Fraction, f [%]

Ti TiB TiB Ti TiB TiB
100Ti 134 ± 5 –
70Ti–30TiB 144 ± 12 330 ± 147
46Ti–54TiB 141 ± 10 280 ± 70
92TiB–8TiB2 136 ± 15 306 ± 22
2 2

– 100 0 0
– 74 26 0
– 44 56 0
394 ± 13 4 93 3
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be extracted. This is a consequence of the choice of the indenta-
tion depth h, which was deliberately chosen to be small enough
compared to the characteristic length of the heterogeneities D,
such that an indentation test that is situated on an inclusion phase
satisfies h/D � 1.

The relatively high standard deviation observed for the TiB
phase should be noted. This is a consequence of the “ substrate
effect” due to proximity of non-TiB phases in close proximity
to the RVE that includes TiB. Since the whisker width varies
significantly, the condition h/D � 1 is likely violated in a sig-
nificant number of individual experiments within the massive
array. In principle, this experimental obstacle could be overcome
by further reducing the maximum indentation depth, but was
beyond the limits of the current experimental capabilities due
to geometric imperfections at the indenter apex for h < 40 nm.
The proximity effect is also demonstrated by the decrease in
the standard deviation with increasing volumetric proportions
of TiB. It has been shown that the characteristic size of the TiB,
D, increases in the case of 92%TiB–8%TiB2 (see Ref. [1] and
Section 4.1.2), and thus the condition h/D is better satisfied as
fTiB increases.

4.2.2. Volumetric proportions
The volumetric proportions of the two phases, Ti and TiB,

have been measured by quantitative X-ray diffraction analysis
and are reported in Table 1 (see also Ref. [34]). The direct com-
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approach increase in accuracy as the mechanical dissimilarity
between any two phases increases.

4.2.3. Mechanical mapping of microstructure
Instrumented indentation facilitates controlled spatial dis-

tribution among indents in patterns such as regularly spaced
arrays. In the nanoindentation arrays employed herein, a square
grid of 10 �m inter-indentation spacing was chosen. The anal-
ysis of each indentation P − h response provides information
about the mechanical properties such as M at each array coordi-
nate (x, y). These properties are, strictly speaking, representative
of a material domain of characteristic length scale max(h, a)
that defines the RVE. Hence, provided that the array spacing is
larger than the characteristic length scale of the material sam-
pled in each experiment, mapping of the properties over the grid
region indicates the morphological arrangement of the phases
comprising the microstructure. A convenient and simple way to
generate these maps is by transforming the discrete data sys-
tem into a continuous distribution of mechanical properties by
linearly interpolating the grid point values over the grid region.
The result of this mapping can be displayed as contour plots in
plan view (see Fig. 8). Such a contour depiction of mechani-

Fig. 8. Mechanical mapping of the indentation results on 70Ti–30TiB (b-c)
as compared with an SEM image (a) of an etched microstucture at a similar
magnification. 1 = Titanium (Ti), 2 = Titanium monoboride (TiB). Scalebar =
10 �m.
arison method [10], used extensively to estimate the retained
ustenite in hardened steels, was here used to provide an esti-
ate of the TiB volume fractions in various composites. In this
ethod, the volume fractions are determined from the relative

ntensities of a particular plane (preferably the strongest reflec-
ion) of TiB phase relatively to the integrated intensity of the
trongest TiB line. Accordingly, the volume fraction of TiB (Vf )
an be written as:

f = RTiITiB

RTiITiB + RTiBITi
(21)

here I is the integrated intensity of the (h k l) peak. The param-
ter R is given by:

= |Fhkl|2pL

V0
(22)

here V0 is the volume of unit cell, Fhkl is the structure factor, p
s the multiplicity factor, and L is the Lorentz polarization factor.
he reflections used in the analysis were (1 0 1)Ti, (2 0 0)TiB and

1 0 1)TiB2.
An estimate of the volumetric proportions of the different

hases is also given by the relative area of each individual
aussian distribution under the cumulative frequency plot (see
ection 3.2 and Eq. (10)). The resulting values after deconvo-

uting the four alloys are provided in Table 3, and demonstrate
he capacity of grid indentation to quantify the relative presence
f different phases. Importantly, herein these volume fractions
re determined not by the differential chemical composition of
hese phases, but by the differential mechanical properties of
hese phases. It should be noted that this criterion immediately
mplies that the volume fractions estimated by the indentation
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cal properties requires the selection of minima-maxima limits
between different phases. As the frequency plots in Figs. 7(b) to
(d) show, there is some overlap in the distribution between dif-
ferent phases, which complicates the definition of clear bound-
aries between phases. As a first-order approach, we choose
equal size domains centered around the mean values of each
phase:

1. 0–200 GPa: Values situated in this range are associated with
regions for which the mechanical response is dominated by
the titanium matrix.

2. 200–400 GPa: Values situated in this range are contained
within the second peak in the frequency plots of Figs. 7(b) to
(d), and are associated with regions in which the mechanical
response is dominated by the TiB whiskers.

Fig. 8 shows plan views of contour plots of the indenta-
tion modulus for the Ti–30%TiB specimen. An SEM image
is also shown in Fig. 8, and demonstrates the correlation of
these mechanical maps with electron microscopy images of the
microstructure. Hence, the mechanical maps provide a means to
characterize the morphology of the microstructure at the scale
defined by the chosen indentation depth, and enables visual-
ization of the mechanically distinct features. In particular, for
the Ti–TiB composite, the contour plots provide a snapshot
of the formation process of the composite: TiB whiskers and
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indentation modulus is directly related to the Young’s modulus,
E, and Poisson’s ratio, ν, of the indented material:

Ms = M = Es

(1 − ν2
s )

(23)

where the subscript s indicates the indented material, s = Ti,
TiB, TiB2. The effect of indenter compliance can be consid-
ered by substituting for M in Eq. (23) the commonly employed
[6,17,31] result of the Hertz contact solution of two elastically
deformable bodies [21]:

1

M
= 1 − ν2

E
+ 1 − ν2

in

Ein
(24)

where E, ν and Ein, νin are the elastic constants of the indented
material and the indenter, respectively. Strictly speaking, dia-
mond crystals are transversely isotropic and Eq. (24) is only
approximate. The International Standards Organization has
recently issued a draft international standard (ISO 14577-2002,
[23]) in which recommend the use of Ein = 1140 GPa, vin =
0.07 for diamond indenters. For the purposes of our analysis,
we will therefore employ these proposed isotropic constants.

The indentation moduli can be converted to the elastic prop-
erties of the individual phases by considering Eq. (24) and
assuming a Poisson’s ratio for each phase. It is interesting to
decompose the effect of the indenter deformation and the Pois-
son’s effect on the magnitude of E calculated from a given M.
To this end, we start by calculating the material plane-stress
elastic modulus Ms, which does not include any assumption
on the Poisson’s ratio. Fig. 9 shows the contribution of the
indenter deformation on the elastic properties extracted thereby.
The horizontal axis corresponds to the measured (composite)
M which implicitly includes the deformation of the indenter,
and the vertical axis quantifies the effect of indenter deforma-
tion on Ms calculated as a function of M for a given indenter
stiffness. It is impressive to note that as the stiffness of the
indented material increases, the indenter deformation becomes
more significant and should be accounted in our analysis. In

Fig. 9. Error induced by the deformation of the indenter, defined as (Ms −
M)/M × 100.
articles are embedded in a percolated matrix of Ti (see Fig.
). The morphological characterization of the microstructure
rovided by this mechanical mapping completes the characteri-
ation of the properties and morphological arrangement in space.
s it will be further discussed in Section 4.3.2, these data are
piece of the puzzle for the development of micromechani-

al models for upscaling of composite mechanical performance
43].

.3. Elastic properties of Ti, TiB, and TiB2

The indentation moduli M determined from the grid indenta-
ion experiments for the Ti, TiB, and TiB2 phases are insensitive
o spatial location, number of experiments, and specimen prepa-
ation procedure. The extracted values can therefore be con-
idered as mechanical properties characteristic of each phase.
o further investigate the intrinsic nature of these properties,
e compare our results with values reported in the literature.
ince the TiB phase cannot be reproduced in macroscale phys-

cal dimensions, data on the elastic constants of this phase are
carce. In fact, the only information regarding E of this phase
s provided by atomistic simulations [18] or by extrapolating

acroscopic experiments on composites comprising different
olumetric proportions of TiB, fTiB, to fTiB = 1 [1].

.3.1. Elastic modulus in terms of M
Elastic contact mechanics provides a convenient framework

or linking the measured indentation modulus, M, with the elastic
roperties of the indented material. The Galin-Sneddon solution
15,20,27,33,36–38] of a rigid, axisymmetric indenter acting on
linear elastic, isotropic, infinite half-space suggests that the
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Fig. 10. Sensitivity of the dimensionless ratio of Young’s modulus normalized
by indentation modulus, Es/Ms, to the Poisson’s ratio νs, over the range of
commonly observed values of ν for engineering materials: 0 ≤ ν ≤ 0.5.

the following calculations, we will rely on the Hertz solution
of the contact between two isotropic solids of Eq. (24), and the
isotropic assumption of the diamond indenter suggested by ISO
[23].

Given the plain-stress elastic modulus of the indented mate-
rial, the Young’s or uniaxial elastic modulus, Es = Ms × (1 −
ν2) can be determined, provided a reasonable estimate of the
Poisson’s ratio. However, it is not necessary to know the value
of the Poisson’s ratio with great precision to obtain a reasonable
estimate of the Young’s modulus. In fact, a Poisson’s ratio of
0.1–0.4, representative of the range including most engineering
metals and ceramics, induces an error on E of less than 10%
(see Fig. 10). Assuming a value of ν = 0.32 [13], 0.16 [1], 0.17
[29] for Ti, TiB, and TiB2, respectively, the elastic moduli of the
three phases can be calculated:

M =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M Ms (Ms − M)/Ms Es

[GPa] [GPa] [%] [GPa]

140 159 14 138 Ti

305 416 36 406 TiB

394 600 52 585 TiB2

The elastic moduli of Ti and TiB (ETi = 138 GPa, ETiB2 =
585 GPa) are in excellent agreement with macroscopic proper-
ties reported in the literature: Elit

Ti = 110–120 GPa [13], Elit
TiB2

=
565 GPa [29]. The elastic properties of the TiB, however, remain
a
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mates from indentation experiments have also been reported
[18], but the experimental scatter was quite significant. Thus,
validation of the magnitude of ETiB obtained herein by recourse
to existing data is difficult.

4.3.2. Micromechanical modeling and macroscopic
composite behavior

To investigate the accuracy of our extracted ETiB, we will
use E

exp
TiB = 406 GPa as input in a composite model that pre-

dicts the macroscopic (homogenized) response, and compare
this prediction with reported macroscopic data. The Ti–TiB
composite can be conveniently modeled with the Mori-Tanaka
micromechanical scheme, which is suitably applied for matrix-
inclusion geometries [28]. The model has been tested on sev-
eral materials and has been found to show very good predic-
tive capabilities (see e.g., Ref. [7]). In the case of a titanium
matrix with isotropic spherical inclusions of TiB, the Mori-
Tanaka scheme yields the following homogenized response
(Khom, Ghom):

Khom = KTi + (KTiB − KTi)fTiB

1 + a(1 − fTiB)((KTiB/KTi) − 1)
(25)

Ghom = GTi + (GTiB − GTi)fTiB

1 + b(1 − fTiB)((GTiB/GTi) − 1)
(26)

where KTi and KTiB are the bulk modulus of the titanium matrix
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matter of current debate. This material exhibits crystalline
nisotropy (orthorhombic unit cell), but the nine elastic con-
tants required to describe the stiffness tensor have never been
easured experimentally, chiefly due to the inability to prepare

ppropriate samples. Estimates of ETiB that assume isotropic
ehavior vary widely (Elit

TiB = 232–622 GPa). A value of Elit
TiB =

71 GPa was suggested from inverse analysis of the composite
lastic modulus [1], whereas a value of Elit

TiB = 485 GPa was
stimated from ab-initio atomistic simulations [18]. Some esti-
nd TiB inclusion, respectively, and GTi and GTiB are the shear
odulus of the titanium matrix and titanium boride inclusion,

espectively. The variables a and b in Eqs. (25) and (26) are
tated as:

= 3KTi

3KTi + 4GTi
; b = 6

5

KTi + 2GTi

3KTi + 4GTi
(27)

qs. (25) and (26) simplify the elongated whisker morphology
f the titanium composite by equivalent isotropic spheres. It
as been found however that, given the random orientation of
he fibers in the matrix, the experimentally observed isotropic
ehavior of a macroscopic composite can be well approximated
y a spherical assumption [1,7]. Finally, given the homogenized
alues of the bulk and shear moduli, the Young’s modulus and
he Poisson’s ratio can be calculated using standard relations of
lasticity theory:

hom = 9KhomGhom

3Khom + Ghom
; (28)

hom = 3Khom − 2Ghom

6Khom + 2Ghom
(29)

he mean elastic values of titanium boride (ETiB = 406 GPa,
TiB = 0.16), as extracted from the indentation analysis (see
able 3), are incorporated in Eqs. (25) and (26) to calculate

he micromechanical predictions of E for a series of fTiB. A
ean value between our indentation estimate and literature val-

es is used for the elastic properties of the titanium matrix
Elit

Ti = 120 GPa, νTiB = 0.32). The micromechanical predic-
ions of the E and G, together with experimental data found in the
iterature (Refs. [1,13,18]), are reported in Fig. 11. The impres-
ive accuracy of the predictions validates the extracted elastic
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Fig. 11. Experimental data and micromechanical predictions of composite mod-
ulus (Upper: Young’s modulus E; Lower: Shear modulus G) versus the volume
fractions of the reinforcing TiB. Source of Macroscopic data: Resonance Fre-
quency [1]; Uniaxial Tension [1]; 3 Point Bending [18].

modulus of the TiB phase, as well as the use of the Mori-Tanaka
scheme to capture the strain localization within TiB inclu-
sions.

This verification of ETiB completes the validation of the pro-
posed massive array or grid indentation approach. This method-
ology is of particular importance for materials for which the
properties of constituent phases are measurable only in situ. As
such, grid indentation represents the only currently available
approach for measuring the intrinsic mechanical properties of
phases as required for micromechanical modeling of composite
response.

5. Conclusions

1. The proposed massive array indentation approach can pro-
vide the in situ elastic properties of individual phases within a
multiphase microstructure. The proposed methodology relies
on careful choice of the indentation depth and on a large
number of experiments that are treated in a simple statistical
manner. This provides a framework to determine valuable
information about the composite microstructure, including
the morphological arrangement and volumetric proportions
of each mechanically dissimilar phase.

2. In cases for which the elastic properties of the indented mate-
rial are comparable to the elastic properties of the indenter

3

585 GPa. These magnitudes of E assume the isotropic nature
of all phases, and are in agreement with available litera-
ture values. Further, by employing the phase properties so
obtained, the elastic modulus of each Ti–TiB composite pre-
dicted by micromechanical modeling agrees well with that
obtained through independent experiments, suggesting that
such a simplified micromechanical approach can be conve-
niently employed for modeling purposes.
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