
Dynamic Article LinksC<Soft Matter

Cite this: Soft Matter, 2012, 8, 77

www.rsc.org/softmatter PAPER
Modeling the making and breaking of bonds as an elastic microcapsule moves
over a compliant substrate

Egor A. Maresov,a German V. Kolmakov,b Victor V. Yashin,a Krystyn J. Van Vlietc and Anna C. Balazs*a

Received 23rd May 2011, Accepted 7th September 2011

DOI: 10.1039/c1sm05952a
By integrating the lattice Boltzmann model for hydrodynamics, the lattice spring model for

micromechanics of elastic solids, and the Bell model for bond formation and rupture, we examine the

fluid driven motion of elastic microcapsules on compliant surfaces. The capsules, modeled as three-

dimensional fluid-filled elastic shells, represent polymeric microcapsules or biological cells. We

observed three regimes of capsule motion. Namely, the capsule rolls steadily along the substrate at

a sufficiently high shear rate, it is stationary at a low shear rate, and exhibits an intermittent motion

(saltation) at intermediate shear rates. At a given shear rate, the regime of capsule motion was found to

depend on the substrate stiffness, and on the rate of rupture of the adhesive bonds. The capsule was

observed to roll steadily on a sufficiently stiff substrate, and at a high rate of bond rupture. In the

opposite limit of a soft substrate and low rate of bond rupture, the system was localized in the

stationary regime. The findings provide guidelines for creating smart surfaces that could regulate the

motion of the microcapsules.
1. Introduction

Polymeric microcapsules constitute ideal micro-carriers for

a range of materials, from inks and flavorants, to cosmetics and

drugs. These microcapsules permit the controlled release of the

encapsulated species and thus, are useful in the food, chemical

and pharmaceutical industries.1 In the vast majority of these

applications, the utility of the capsules comes from their binding

to substrates, and consequently, releasing the encapsulated

species at these surfaces. For example, for the targeted delivery of

drugs, dyes or flavorings, the capsules must bind to an interface

in order to be effective. In this binding process, the mechanical

compliance of both the capsule and the substrate can have

a significant effect. For instance, the contact area between

a compliant capsule and a surface will be greater than the contact

area between a stiff capsule and that surface; hence, the more

compliant capsule could be more effective in the delivery process.

Similarly, a more compliant substrate can be more effective at

binding the capsules and thus, improving the utility of the

delivery device.

Another important component in the technological uses of

polymeric microcapsules1 (as well as other micro-carriers, such as

liposomes2 and polymersomes3) is an imposed flow field; for

example, blood flow plays a vital role in the effectiveness of
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microcapsules used for drug delivery. Thus, to enhance the effi-

cacy of these micro-carriers, it becomes important to determine

how the combined effects of the flow field, the compliance of the

capsule, the elasticity of the substrate and binding interactions

between the capsule and substrate contribute to the performance

of the system. Given this number of critical variables, compu-

tational modeling provides an effective approach for pinpointing

the factors that influence the system’s behavior.

Herein, we take advantage of our recently developed hybrid

‘‘LBM/LSM’’ computational approach4–9 to model a microcap-

sule as a fluid-filled, elastic shell and simulate the effects of an

external fluid on the motion of this capsule on a flexible

substrate. In our hybrid approach, we integrate two mesoscopic

lattice models, the lattice Boltzmann model (LBM) and the

lattice spring model (LSM), which can be used to simulate the

underlying processes that give rise to the appropriate continuum

behavior. In particular, the fluid dynamics is captured via the

LBM, which can be viewed as an efficient solver for the Navier–

Stokes equation. More specifically, the LBM incorporates the

mesoscopic physics of fluid ‘‘particles’’ propagating and colliding

on a cubic lattice such that the averaged, long-wavelength

properties of the system obey the desired Navier–Stokes

equation.10

The behavior of the capsule’s elastic shell is simulated using the

LSM. In the LSM, an elastic material is modeled through

a network of interconnected harmonic ‘‘springs’’, which describe

the interactions between neighboring sites. The mechanical

properties of this material (e.g., the Young’s modulus) can be

expressed in terms of the spring constants of the harmonic

springs and the spacing between the lattice sites. Notably, the
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Fig. 1 An elastic capsule adhered to a compliant substrate and sur-

rounded by fluid with an imposed shear flow. The green lines represent

the adhesive bonds formed between the capsule and substrate.
large scale behavior of the resultant system can be mapped onto

continuum elasticity theory.11

Our integrated LBM/LSM approach allows for a dynamic

interaction between the elastic walls and the surrounding fluid. In

other words, dynamically and interactively, the moving walls

exert a force on the fluid and, in turn, the fluid reacts back on the

walls. In this manner, we can model the complex fluid-structure

interactions that occur at the boundaries between the fluid and

the compliant surfaces (i.e., the capsule’s elastic shell and the soft

substrate). We have validated our three-dimensional (3D) LBM/

LSM model by determining the drag force on a periodic array of

spheres, as well as simulating the breathing mode oscillations of

a single capsule.4 In both cases, the simulations showed quanti-

tative agreement with analytical theory.4

In our previous LBM/LSM simulations of the motion of fluid-

driven capsules on adhesive surfaces,4–9 we used the Morse

potential to model the binding interactions between the capsule

and substrate. Herein, wemodify our approach by integrating the

Bell model12 into the LBM/LSM to describe the formation and

rupture of chemical bonds between the compliant capsule and soft

substrate. The Bell model allows us to take into account the effect

of an applied force (arising, for example, from an imposed flow)

on the rupture of the bonds. Furthermore, we can ascribe a degree

of chemical specificity to the bonds formed between the capsules

and substrate. As detailed in theMethodology section, the rupture

rate, kr, is an exponential function of the force applied to the bond

between the capsule and the substrate. The rupture rate is also

directly proportional to the off-rate constant, koff, which is an

intrinsic characteristic of a chemical bond. By specifying the value

of koff, we can ascribe a specific chemical character to the bond

between the capsule and surface.

Notably, the Bell model has been used successfully to describe

ligand-receptor interactions between biological interfaces. In

particular, Hammer et al.13 have pioneered the use of the Bell

model to simulate the dynamic interactions of leukocytes rolling

on rigid surfaces and showed how the behavior of the leukocytes

depended on the applied force and relevant rate constants. In the

latter studies, the leukocytes were modeled as rigid spheres. More

recently, researchers have modeled the leukocytes as compliant

capsules.14,15 Nonetheless, in these different studies, the

substrates were modeled as rigid surfaces.

To the best of our knowledge, the studies described herein

constitute the first simulations of the interactions between

mobile, compliant capsules and soft surfaces that interact

through Bell bonds. These studies not only provide insight into

the dynamic behavior of microcapsules on flexible substrates, but

also can shed light on the factors that contribute to regulating the

interactions between biological cells, such as leukocytes, and

compliant interfaces. Below, we demonstrate that the compliance

of the substrate can have a significant effect on the motion of the

capsules. Furthermore, by examining the behavior of the system

at different values of the shear rate, the Young’s moduli of both

the substrate and the capsule, and the chemical binding

constants, we show that judicious choices in the parameter space

allow one to either localize the capsule at a fixed site on the

surface or drive the micro-carrier to roll along the interface.

Given that different applications might necessitate different

behavior, the findings provide guidelines for tailoring the system

to exhibit the desired performance.
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Below, we first describe our computational approach and then

discuss our findings on the sensitivity of the dynamic behavior of

the microcapsules to the properties of its local environment.
2. Methodology

2.1 Model

We use our hybrid LBM/LSM approach to simulate a fluid-filled,

three-dimensional capsule, which is immersed in a host fluid and

localized on a compliant substrate (Fig. 1). Due to an imposed

shear flow, the capsule can be driven move along the substrate.

The capsule’s elastic, solid shell is modeled via the lattice spring

model (LSM), which consists of a triangular network of

harmonic springs connecting regularly spaced mass points, or

nodes.4–9,11,16 The spring force Fs on node ri is equal to

FsðriÞ ¼ �
X

j

kj ½ðrij � r
eq
ij Þ=rij � rij (1)

where the summation runs over the nodes that are connected to

the ith node by the springs. The quantity rij ¼ ri � rj is the radius

vector between ith and jth nodes, reqij is the equilibrium length of

the spring and kij is the spring constant. To capture the dynamics

of the solid shell, we numerically integrate Newton’s equations of

motion, M d2ri/dt
2 ¼ F(ri), where M is the mass of a node. Upon

transforming the equations to the dimensionless form, the mass

of a node is taken to beM¼ 1. The total force F acting on a node

consists of the following: the sum of the spring forces between the

masses (representing the elastic response of the solid shell), the

force exerted by the fluid on the shell at the fluid-solid boundary,

and the adhesion forces at the compliant substrate (see below).

The capsule’s spherical shell is formed from three concentric

layers of the LSM nodes. The layers were generated by trian-

gulation of a sphere and each layer contains N ¼ 642 nodes. The

nodes within a layer are connected by springs along the edges of

the triangles, and each node in a layer is connected by springs to

several neighboring nodes in an adjacent layer. Hence, the shell

contains a total of 14,724 springs. The distance between the

layers of the shell is 1.5 DxLBM, where DxLBM is the spacing in the
This journal is ª The Royal Society of Chemistry 2012



lattice Boltzmann model LBM (see below), so that the capsule

thickness is h ¼ 3 DxLBM. (The distance between the layers of the

shell was chosen to be similar to the mean length of the springs

within a layer to maintain the isotropic nature of the elastic

properties.) The outer radius of the shell was taken to be

R ¼ 12.5 DxLBM.

All springs in the capsule have the same spring constant kcap,

and the equilibrium length of a spring is equal to the distance

between the two corresponding nodes in the undeformed state.

Note that the springs can differ in their equilibrium length

because they are used to model an intrinsically curved object

(capsule). For small deformations, the LSM obeys linear elas-

ticity theory and all the macroscopic elastic properties, such as

the Young’s modulus, shear modulus, bending rigidity, etc., are

expressed in terms of the spring constants, nodal masses, and the

lattice geometry.11,16,17 In particular, the Young’s modulus of the

capsule’s shell can be estimated as Ecap z 5kcap/2lcap,
11 where lcap

z 1.94 DxLBM is the average equilibrium length of the springs.

(We note that in order to avoid numerical fluctuations in the

forces acting on the solid nodes,4,8,16 the respective LSM and

LBM spacing should be chosen such that lcap $ DxLBM.)

The elastic substrate is modeled via a cubic lattice of LSM

nodes, with the spacing between these nodes being DxLSM. The

springs connect the nearest and next-nearest nodes and thus,

have equilibrium lengths of DxLSM and
ffiffiffi
2

p
DxLSM , respectively;

the respective spring constants are ksub and ksub/2. The resulting

Young’s modulus of the substrate is Esub ¼ 5ksub/2 DxLSM.11 We

took DxLSM ¼ DxLBM in the simulations.

The dynamics of the host fluid and the fluid within the capsule

are simulated using the lattice Boltzmann model (LBM). The

LBM can be viewed as an efficient solver for the Navier–Stokes

equation.10 Specifically, this lattice-based model consists of two

processes: the propagation of fluid ‘‘particles’’ to neighboring

lattice sites, and the subsequent collisions between particles when

they reach a site. These fluid particles are representative of

mesoscopic portions of the fluid, and are described by a particle

distribution function fi(r,t), which characterizes the mass density

of fluid particles at a lattice node r and time t propagating in the

direction i with a constant velocity ci. The velocities ci in the ith

direction are chosen so that fluid particles propagate from one

lattice site to the next in exactly one LBM time step, DtLBM.

The time evolution of these distribution functions is governed

by a discretized Boltzmann equation.10 To model the three-

dimensional system, we use the 3DQ19 scheme, which involves

a set of 19 particle velocity distribution functions at each node,

and the single relaxation time approximation (the LBGK

scheme).18 The hydrodynamic quantities of interest are the

moments of the distribution function, i.e., the mass density

r¼P
ifi, the momentum density j ¼ ru ¼P

icifi, with u being the

local fluid velocity, and the momentum flux P ¼ P
icicifi.

In our LBM/LSM simulations, the fluid and solid phases

interact through appropriate boundary conditions.4,5,16 In

particular, the lattice spring nodes that are situated at the solid-

fluid interface impose their velocities on the surrounding fluid;

the velocities are transmitted through a linked bounce-back

rule19 to those LBM distribution functions that intersect the

moving solid boundary. In turn, the LSM nodes at the solid-fluid

interface experience forces due to the fluid pressure and viscous

stresses at that boundary. We calculate the latter force based on
This journal is ª The Royal Society of Chemistry 2012
the momentum exchange between the LBM particle and the solid

boundary, and then distribute this quantity as a load to the

neighboring LS nodes. This scheme provides a means of imple-

menting no-slip boundary conditions at the fluid-solid interface.

The capsule binds to the substrate through the formation of

bonds that mimic the ligand-receptor interactions in biological

systems. Each node on the capsule’s outer surface can form

a bond with each substrate node if the distance between the two

nodes, r, is shorter than a certain cut-off radius, rcut. When the

bond is formed, the interaction between the two nodes is

described by the Hookean spring potential

Ubond(r) ¼ 1/2 k(r � leq)
2, (2)

where k is the bond spring constant, and leq is the length of an

undeformed bond. The cut-off radius is taken to be rcut¼ 2leq. To

prevent any overlap between the capsule and substrate, we

assume that the capsule and substrate nodes interact through the

following short-range repulsion:

Us(r) ¼ us exp(�r/ls) (3)

Here, us and ls are the respective strength and length of the

repulsion; in the simulations, we set ls ¼ 0.75 DxLBM and us ¼
14.4kDx2LBM. We note that the potential Us(r) mimics the repul-

sive part of the Morse potential.20

The bonds between the capsule and substrate can break and

reform repeatedly. We utilize the Bell model12,13 to simulate the

stochastic processes of bond rupture and reforming. The Bell

model serves as a useful framework for describing the relation-

ship between bond dissociation and force.21–23 The Bell model has

been used widely to describe bonding interactions in various

biological systems; for example, the model was utilized in char-

acterizing the mechanical behavior of biological tissue,24 the

unfolding of proteins,25 viral attachment,26,27 and adhesion of

cells to surfaces.28–30 In the Bell model, the rupture rate constant,

kr, is an exponential function of the force F applied to the bond,

kr ¼ koff exp(r0 F/kBT). Here, koff is the rupture rate constant of

an unstressed bond (the off-rate), the parameter r0 characterizes

the sensitivity of the bond to stress, kB is the Boltzmann constant,

and T is temperature. The force acting on a bond depends on the

bond length, i.e., on the distance between the nodes, r, and is

calculated by differentiating eqn (2) to obtain the following

expression for the distance-dependent rate constant of rupture:

kr(r) ¼ koff exp[r0k(r � leq)/kBT], (4)

The distance-dependent rate constant of bond reforming, kf(r),

for a broken bond is determined from the principle of detailed

balance as13

kf ðrÞ
krðrÞ ¼

kon

koff
exp½�UbondðrÞ=kBT � (5)

In the above equation, Ubond(r) is given by eqn (2), and kon is the

rate constant of bond formation (the on-rate).

2.2 Model parameters

Typical radii of polyelectrolytemultilayermicrocapsules are in the

range of 0.5 to 10 mm.1,31 In our simulations, we assume the radius
Soft Matter, 2012, 8, 77–85 | 79



of capsule to be ofR¼ 10 mm, so the LBM spacing corresponds to

DxLBM ¼ 0.8 mm since we take R ¼ 12.5 DxLBM (see above). The

LBMviscosity is given as m¼ 1/6Dx2LBMDt�1
LBM.10We assume that

in the dimensional units, the viscosity is equal to that of water at

the room temperature, m ¼ 10�6 m2 s�1, so one time step of the

LBM corresponds to DtLBM ¼ 1.07 � 10�7 s.

The fluid is located in a channel of thickness H ¼ 45 DxLBM,

which corresponds to the distance between the substrate and the

top of the simulation box. The shear flow is generated by

assigning a constant value to the fluid velocity in the X direction

at the top LBM nodes; we refer to this as the wall velocity, Vw.

The shear rate _g was varied from 2 � 10�7 to 4 � 10�6 Dt�1
LBM. A

wall velocity of Vw ¼ 1 � 10�4 DxLBMDt�1
LBM corresponds to

a shear rate of _g ¼ Vw/H ¼ 2.2 � 10�6 Dt�1
LBM, or 20.1 s�1 in the

dimensional units, and a Reynolds number Re ¼ RVw/m ¼ 7.5 �
10�3. In what follows, the shear rate 20.1 s�1 is taken as the

reference value, and is denoted _g0. It is worth noting that the

value of _g0 ¼ 20.1 s�1 lies within the range of shear rates used in

experimental studies of capsules and biological cells; the latter

range typically varies from 5 to 400 s�1.1

It is convenient to characterize the rigidity of capsule by the

dimensionless capillary number Ca ¼ rmVcap/Ecaph, where r and

Vcap are the respective fluid density and capsule velocity.

The capillary number Ca represents the relative importance of

the viscous stress and the elastic stress on the capsule’s shell. The

capillary number for rigid, essentially non-deformable capsules6

is typically on the order of Ca < 10�3. Here, we use Ca � 10�2,

which corresponds to a capsule that is slightly deformable under

a viscous stress. At the shear rate of _g0 ¼ 2.2 � 10�6 Dt�1
LBM, the

capillary number in our system is Ca ¼ 2.05 � 10�2.

The rigidity of the substrate was taken to be considerably

lower than that of the capsule. The relative substrate modulus

E ¼ Esub/Ecap was varied from 0.024 to 0.121.

The strength of the capsule-substrate adhesive interactions

relative to the elastic stress in the capsule is controlled by the

dimensionless parameter F ¼ kN/Ecaph, where k is the bond

spring constant and N is the total number of nodes on the shell

surface. We set F ¼ 0.62 in the simulations, so the adhesion

strength was comparable to the elastic stresses in the capsule’s

shell.4

The rate constant of bond rupture koff was varied from 3.3 �
10�6 to 1/6 � 10�4 Dt�1

LBM. In the dimensional units of time, the

latter value equals 156 s�1 and corresponds to a bond energy of

25 kBT, which is characteristic of some ligand-receptor interac-

tions, such as avidin–iminobiotin,32 and for the thiol/disulfide

exchange reaction.33 The value koff � 102 s�1 is also characteristic

of other biological binding interactions.34–36

In contrast to koff, the value of the on-rate kon is not as readily

evident from experimental studies. It is usually taken to be one to

four orders of magnitude greater than koff. For example, the

value of kon ¼ 35koff was used for interpreting the experimental

data on the E-selectin/sLex pair.14 In our simulations, the rate

constant of the bond formation was taken to be kon ¼ 1 � 10�3

Dt�1
LBM, so that the ratio kon/koff was in the range of 60 to 250.
2.3 Computer simulations

The LBM simulation box consisted of 70 � 40 � 46 nodes in the

XYZ directions, respectively. The shear flow was generated by
80 | Soft Matter, 2012, 8, 77–85
setting the X component of fluid velocity to a constant value of

VW at the top LBM nodes. The boundary conditions for the

LBM simulations were periodic in the X and Y directions. The

mid-grid bounce back scheme was used to approximate the no-

slip boundary conditions at the fluid-solid interface, as discussed

above. The reversed propagation scheme was employed for the

purpose of parallelization.37 We note that the forces and fluid

velocities are averaged over two successive LBM steps to elimi-

nate potential numerical instabilities in the simulations.38 (Other

stabilization techniques can also be used to address this issue.39)

The cubic lattice for modeling the elastic substrate via the LSM

consisted of 72 � 42 � 9 nodes in the XYZ directions, respec-

tively. The LSM lattice was shifted relative to the LBM nodes by

DxLSM/2 in all three directions. The bottom nodes of the

substrate lattice were fixed in space. The top nodes of the

substrate were subject to the forces due to the hydrodynamic and

substrate-capsule interactions. Free boundary conditions were

applied to the LSM nodes of substrate at the vertical edges of the

sample, so that these edges were allowed to move without specific

constrictions. It is worth noting that the LSM lattice is suffi-

ciently wide that the capsule remains far from the substrate’s

edges during the simulation.

Newton’s equations of motion for the LSM nodes in the

substrate and capsule were integrated numerically using the

fourth order Runge–Kutta algorithm with the time step DtLBM.

The capsule and substrate interact though the chemical bonds,

eqn (2), and the repulsive potential, eqn (3). Reshuffling of the

Bell bonds was performed every time step of the LBM simula-

tions. The probability of a connected bond to break and the

probability of a broken bond to reform during the time step

DtLBM were taken to be of the following forms:

wr ¼ 1� expð�krDtLBMÞ;
wf ¼ 1� expð�kfDtLBMÞ; (6)

where the values of kr and kf were computed according to eqn (4)

and (5).

Each simulation run was initiated by establishing the equilib-

rium adhesion contact between the capsule and substrate for the

given set of model parameters. For this purpose, the unde-

formed, spherical capsule was put into the quiescent fluid (i.e.,

the LBM and upper wall velocities were zero) close to the

substrate so that the bonds could form. Due to this bond

formation, the capsule moves toward the substrate. During the

equilibration, the capsule assumes its equilibrium shape and the

velocities of the capsule’s center of mass and surrounding fluid

gradually decrease. The shear flow was initiated by setting the

velocity VW of the upper LBM nodes at the time tstart ¼ 1.5� 105

DtLBM, which is equivalent to 0.016 s (see Fig. 2). The total

duration of a simulation run was 2 � 106 DtLBM, or 0.21 s in the

dimensional units.

Finally, the physical and the computational parameters of our

model are summarized in Table 1.
3. Results and discussion

3.1 Three regimes of capsule motion

The above computational model was used to investigate the

dynamic behavior of the fluid-driven capsules for a range of
This journal is ª The Royal Society of Chemistry 2012



Fig. 2 The vertical position of the capsule’s shell center of mass as

a function of time. The shear flow is imposed at tstart ¼ 1.5 � 105 DtLBM.

The inset shows the LSM nodes of the substrate and capsule (internal and

external layers only) at tstart.
shear rates. Via these simulations, we observed three distinct

types of dynamic behavior, which are characterized in Fig. 3.

In particular, the plots in Fig. 3a and 3b show the respective

displacement and velocity of the capsule’s center of mass as

a function of time t for three values of shear rate (indicated in the

figure); the interaction strength and rate of bond rupture are

fixed at F ¼ 0.62 and koff ¼ 1.67 � 10�5 Dt�1
LBM ¼ 7.6 _g0,

respectively. As seen in Fig. 3, for the lowest shear rate consid-

ered here, _g¼ 0.10 _g0, the capsule is in the ‘‘stationary’’ state, i.e.,

the capsule’s position does not change with time (Fig. 3a) and its
Table 1 Nomenclature and parameters used in the simulation

LBM
Lattice spacing
Time step
Simulation box
Unperturbed height of channel
Capillary number
Shear rate
Reference value
Reynolds number
Kinematic viscosity
LSM
Mass of a node
Capsule
Radius
Shell thickness
Number of nodes (per each of 3 layers)
Average equilibrium spring length
Spring constant
Substrate
Lattice size
Equilibrium spring length
Spring constant
Relative stiffness (Young’s modulus)
Adhesion
Bell bonds (eqn (4), 5)
Off-rate of unstressed bonds
On-rate of unstressed bonds
Equilibrium length
Spring constant
Sensitivity to strain
Nonspecific repulsion (eqn (3))
Length
Respective strength

This journal is ª The Royal Society of Chemistry 2012
velocity fluctuates near zero (Fig. 3b). For an intermediate value

of shear rate, _g ¼ 0.19 _g0, a capsule can exhibit a cycle of ‘‘stop

and start’’ behavior, where the capsule is stationary for a period

of time, but then is driven to move for a finite time by the

imposed flow. This ‘‘stop-and-start’’ phenomenon, referred to as

‘‘saltation’’, has been detected in experimental studies of leuco-

cytes.40,41 Saltation was also observed in the computer simula-

tions of capsules driven to move along a rigid surface by an

imposed shear flow.15 It is important to recall that in contrast to

the previous studies, we are modeling the rolling of capsules

along a compliant substrate. Finally, at the sufficiently higher

shear rate of _g ¼ 0.6 _g0, the capsule moves continuously (i.e.,

travels from left to right in our simulation, with a steady increase

in its x-coordinate), as shown in Fig. 3a. The velocity of the

moving capsule fluctuates around some positive value (see

Fig. 3b).

The continuously moving capsule undergoes a rolling motion

on the substrate. Fig. 4 shows the velocity profiles vfluid and vcaps
for the fluid and capsule, respectively, at t ¼ 1.1 � 106 DtLBM or

_g0t¼ 2.4, which corresponds to the middle of the simulation run.

The fluid velocity profile vfluid(z) was obtained by averaging the

x-component of the fluid velocity, vx(x,y,z), along nodes in the

y-direction at x ¼ 0 and a given value of z. To obtain vcaps(z),

the x-component of the velocity of the capsule shell nodes was

averaged over the nodes having the z-coordinate within the

interval from z to z + DxLBM. As seen in Fig. 4, the capsule

velocity vcaps is close to zero near the substrate surface at z ¼ 0,

and increases with an increase in z. The latter behavior of vcaps as

a function of z indicates that the capsule is undergoing a rolling
DxLBM ¼ 0.8 mm
DtLBM ¼ 1.07 � 10�7 s
70 � 40 � 46 (DxLBM)3

H ¼ 45 DxLBM
Ca ¼ rmVcap/Ecaph � 10�2

_g ¼ 2 � 10�7–4 � 10�6 Dt�1
LBM

_g0 ¼ 2.2 � 10�6 Dt�1
LBM � 20.1 s�1

Re ¼ RVw/m � 10�3–10�2

m ¼ (1/6) Dx2LBM Dt�1
LBM m ¼ 10�6 m2 s�1

mLSM

R ¼ 12.5 DxLBM ¼ 10 mm
h ¼ 3 DxLBM
N ¼ 642
lcap z 1.94 DxLBM
kcap ¼ 0.8 � 10�4–1.0 � 10�4 mLSM Dt�2

LBM

72 � 42 � 9 (DxLBM)3

DxLSM ¼ DxLBM
ksub ¼ 2 � 10�6–5 � 10�6 mLSM Dt�2

LBM

E ¼ Esub/Ecap ¼ 0.024–0.121

koff ¼ 3.3 � 10�6–1/6 � 10�4 Dt�1
LBM ¼ 1.5–7.6 _g0

kon ¼ 1 � 10�3 Dt�1
LBM ¼ 4.5 � 102 _g0

leq ¼ 2 DxLBM
k ¼ 3 � 10�7 mLSM Dt�2

LBM

r0k/kBT ¼ 0.9 Dx�1
LBM

ls ¼ 0.75 DxLBM
us ¼ 14.4 k Dx2LBM

Soft Matter, 2012, 8, 77–85 | 81



Fig. 3 The three regimes of the capsule’s motion observed in the simu-

lations. (a) Displacement of the capsule’s shell center of mass as a func-

tion of time corresponding to (1) the stationary state at _g ¼ 0.1 _g0, (2) the

intermittent regime (saltation) at _g ¼ 0.19 _g0, (3) the steady rolling at

_g ¼ 0.6 _g0. (b) Velocity of the capsule’s shell center of mass along the

trajectories shown in (a). F ¼ 0.62, E ¼ 0.061, koff/ _g0 ¼ 7.6.

Fig. 4 The regime of steady rolling. The velocity profiles of fluid, vfluid,

and capsule, vcaps, and the configuration of the capsule (circles) and

substrate (crosses) correspond to the middle of the simulation run (3) in

Fig. 3 at t ¼ 1.1 � 106 DtLBM ¼ 2.4 _g�1
0 .
motion. It is worth noting that although the velocity of the

capsule fluctuates in time (see Fig. 3b), the velocity of nodes is

always close to zero near the substrate.

Our simulations successfully reproduce the three dynamic

regimes observed in experimental studies on living cells, namely,

the ‘‘stationary’’, ‘‘saltation’’ and ‘‘rolling’’ regimes.41 It is

important to note that our simulations are capable of repro-

ducing the stationary and saltation regimes because the capsule-

substrate interactions are described by the Bell model, which

mimics the formation of the ligand-receptor bonds.12,13 In

contrast, if the energy-conserving Morse potential is used to

model the capsule-substrate interactions, the capsule moves even

under a weak shear flow; the capsule motion can, however, be

arrested if the surfaces encompass chemical patterns or physical

corrugations.4,7 Below, we show that a capsule interacting with

a substrate via Bell bonds can remain stationary even on

a chemically homogeneous, smooth surface provided that the

latter substrate is sufficiently soft.
Fig. 5 Effect of the relative compliance of the substrate, E ¼ Esub/Ecap,

on the velocity of rolling motion of the capsule at the capsule rigidity of

F1 ¼ 0.62 (softer capsule) and F2 ¼ 0.5 (stiffer capsule). The results

shown were obtained at _g ¼ 0.15 _g0 and koff/ _g0 ¼ 7.6. The data points

were obtained by averaging the velocity over the last three-fourths of the

simulation time.
3.2 Effect of substrate compliance on the rolling motion of the

capsule

By varying the relative rigidity of the substrate, E¼ Esub/Ecap, we

found that the capsule is capable of rolling only on a sufficiently
82 | Soft Matter, 2012, 8, 77–85
rigid substrate. Fig. 5 shows the mean velocity v of the capsule’s

center of mass (averaged over 1.5 million time steps) as a function

of E at the shear rate of _g ¼ 0.15 _g0 and the two values of capsule

rigidity of F1 ¼ 0.62 (softer capsule) and F2 ¼ 0.5 (stiffer

capsule). Note that the substrate rigidity Esub was normalized by

the respective value of Ecap. Each data point shown in Fig. 5

represents an average over three or four independent simulation

runs. The error bars indicate the standard deviation of the mean

velocity. Fig. 5 shows that the dynamic behavior of fluid-driven

capsules depends critically on the substrate rigidity. Namely, at

a given shear rate _g and capsule rigidity F, the capsule moves if

the value of E exceeds some critical value Ecr, and is stationary if
This journal is ª The Royal Society of Chemistry 2012



E < Ecr. The value of Ecr decreases with an increase in the capsule

rigidity, i.e., stiffer capsules can move on softer substrates. For

a relative substrate rigidity E within the range of 0.058 to 0.061,

the stiffer capsule F2 ¼ 0.5 moves while the softer capsule F1 ¼
0.62 is in the stationary state (Fig. 5). At 0.061# E# 0.064, both

of the capsules roll, but the stiffer capsule moves faster than the

softer one. (It is worth noting that according to the Mann–

Whitney–Wilcoxon test,42 the difference in the mean velocity

values is significant at the level of 5% within the latter range of

E.) Finally, at a higher substrate rigidity of E$ 0.07, both of the

capsules move with the same velocity of z0.15 _g0R, i.e., the

velocity of the shear flow at the distance R from surface, _gR.

If a capsule is in the stationary state on a soft substrate,

a sufficient increase in the shear rate can drive the capsule to roll.

Fig. 6 shows a phase map of the rolling and stationary regimes in

the coordinates E and _g for a capsule of rigidity F ¼ 0.62. In

Fig. 6, the circles and crosses denote the rolling and stationary

regimes, respectively. As can be seen, the rolling regime is located

at higher shear rates than the stationary regime, and the

boundary between the two regimes is a decreasing function of

substrate rigidity E. Hence, a higher shear rate _g is necessary to

induce rolling on a soft substrate (low E) than on a stiff substrate.

The observed dependence of the dynamic behavior on the

rigidity of both the capsule and substrate (Fig. 5 and 6) can be

readily explained. Due to adhesion, both the capsule and

substrate undergo a deformation (see Fig. 4). The more

compliant the adherent surfaces are, the more adhesive bonds

that are formed. As a result, a greater drag force is needed to

break the bonds and drive the capsule to move. It is also clear

that the motion of a capsule in shear flow should depend on how

readily the capsule-surface bonds can be broken. The effect of the

bond breakage rate is discussed in the next section.
3.3 Effect of the rate of bond breakage

Fig. 7a shows the trajectories of the capsule at values of the off-

rate constant koff varying from 1.5 _g0 to 7.6 _g0; the on-rate

constant is fixed at kon ¼ 10�3 Dt�1
LBM ¼ 450 _g0. To obtain the

results presented in Fig. 7a, a capsule of rigidity F ¼ 0.62 was

driven by an imposed shear rate of _g ¼ 0.16 _g0 along a substrate

of relative rigidity E ¼ 0.073. The plot indicates that the
Fig. 6 Phase map of the rolling (circles) and stationary (crosses) regimes

in the coordinates E and _g at F ¼ 0.62 and koff/ _g0 ¼ 7.6.

This journal is ª The Royal Society of Chemistry 2012
dynamics of bond breakage and formation can affect the regime

of capsule motion on this substrate. In particular, Fig. 7a shows

that the capsule motion is stationary at a low rate constant of the

bond breakage (curve 1), and that an increase in koff enables this

capsule to roll on the surface (curves 2–5).43

It is important to note that the steady rolling motion was

observed only in simulations involving sufficiently high breakage

rates; in Fig. 7a, curves 4 and 5 correspond to the rolling regime.

At intermediate values of koff, the capsule exhibits irregular

motion during which the capsule stops and then, starts moving

again, as in curves 2 and 3 in Fig. 7a. This is the characteristic

feature of the saltation regime. For a fixed set of parameters, the

behavior of the capsule varies between different simulation runs

in the saltation regime as demonstrated in Fig. 7b, which shows

the trajectories obtained in three simulation runs at koff ¼ 2.7 _g0.

Furthermore, an increase in koff does not necessarily result in

a systematic increase in the velocity of the capsule in the saltation

regime (not shown); this is in contrast to the behavior observed in

the steady rolling regime.

The irregularity of capsule motion in the saltation regime is

a manifestation of the fluctuations induced by the Bell bonds,

which break and reform stochastically. At each time step in the
Fig. 7 Effect of the rate of bond breakage on the capsule’s motion. (a)

Displacement of the capsule’s shell center of mass as a function of time at

the values of koff indicated in the figure. Depending upon koff, the capsule

exhibits the stationary state (curve 1), saltation (curves 2 and 3), or steady

rolling (curves 4 and 5). (b) Irregularity of the capsule motion in the

saltation regime: the behavior varies between different simulation runs.

F ¼ 0.62, E ¼ 0.073, _g ¼ 0.16 _g0.
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Fig. 9 Phase map of the stationary (crosses), saltation (crossed open

circles), and rolling (solid disks) regimes of capsule motion in the coor-

dinates koff and _g at F ¼ 0.62 and E ¼ 0.073.
simulations, there are from 5 � 103 to 1.5 � 104 bonds formed

between the capsule and substrate; however, only a small fraction

of these bonds affect the rolling of the capsule. The latter

observation is evident from Fig. 8, which shows the probability

of a bond to break as a function of the bond position at koff ¼
2.7 _g0. The bond breakage, which is necessary for the capsule to

move, takes place predominantly at the rim of capsule-substrate

contact area. Thus, only bonds located at the rim control the

capsule rolling motion and cause the irregular dynamics in the

saltation regime.

Fig. 9 summarizes the results of the simulations at various

values of koff and _g, and the rigidities of the capsule and substrate

of F ¼ 0.62 and E ¼ 0.073, respectively. In this figure, the

symbols indicate a regime of motion observed at a specific pair of

values koff and _g. For each (koff, _g) pair, we ran three simulations

and each simulation was run for 2 � 106 time steps, which

corresponds to approximately 0.21 s of real time (see Section

2.2). The regime was labeled as ‘‘rolling’’ if the capsule moved

steadily without stopping until the end of each of the three runs,

and cases where the capsule was initially immobile up to 106 time

steps were included. The regime was labeled as ‘‘stationary’’ if by

the end of each of the three runs the capsule velocity was zero,

and the cases of initial saltation were included. The regime was

labeled as ‘‘saltation’’ in all other cases. The plot in Fig. 9 indi-

cates that an increase in the off-rate koff gives rise to a weaker

capsule-substrate adhesion so that the capsule can move under

lower shear rates.

4. Conclusions

By integrating mesoscale computational approaches for

modeling hydrodynamics, micromechanics, and adhesion, we

investigated the fluid driven motion of an elastic microcapsule

reversibly bound to a compliant surface. Our combined LBM/

LSM approach captures the dynamic interaction between the

elastic capsule, substrate, and surrounding fluid, which is subject

to the external shear. The adhesion between the capsule’s shell

and the substrate was due to the formation of biomimetic,

reversible bonds, which were described by the Bell model.

Using this computational model, we observed three regimes of

capsule motion. Namely, the capsule rolls steadily along the
Fig. 8 The probability of a bond to break, wr (see eqn (6)), as a function

of bond position at koff ¼ 2.7 _g0, F ¼ 0.62, E ¼ 0.073, _g ¼ 0.16 _g0.
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substrate at a sufficiently high shear rate, it is stationary at a low

shear rate, and exhibits an intermittent motion (saltation) at

intermediate shear rates. At a given shear rate, the regime of

capsule motion was found to depend on the substrate stiffness,

and on the rate of rupture of the adhesive bonds. The capsule was

observed to roll steadily on a sufficiently stiff substrate, and at

a high rate of bond rupture. In the opposite limit of a soft

substrate and a low rate of bond rupture, the system was local-

ized in the stationary regime.

Within the range of model parameters considered here, the

saltation regime is most clearly distinguished through a variation

of the rate of bond rupture. We demonstrated that the irregular

capsule motion characteristic of saltation is due to the stochas-

ticity in the processes of bond rupture and formation. The

irregular saltation motion exists even at a high surface density of

the adhesive bonds. The latter behavior is due to the fact that not

all of the bonds contribute to the capsule’s dynamics; rather, it is

only the fraction of bonds situated at the rim of the contact area

that is primarily responsible for the motion of the capsule.

One of the motivations for carrying out these studies was to

demonstrate that the compliance of the substrate can play

a critical role in the dynamic behavior of the capsules. As noted

above, we observed that a sufficiently rigid substrate is necessary

for the sustained fluid-driven motion of the capsules. In other

words, even in an imposed flow field, the capsules can be made to

remain stationary by tailoring the compliance of the substrate.

The latter findings are particularly important when considering

the release of species encased within the capsules; namely, soft

surfaces will favor the release of the encapsulated species in

a specific area, while more rigid substrates will enable the

released species to be effectively spread over a large region of the

surface. In applications where the surface rigidity is not a vari-

able, our findings show that the values of koff and _g can be used

to tailor the motion of the capsules. For example, for small koff
values (which can be achieved by judicious choice of functional

groups on the capsules and surface), the capsules can remain

stationary on a relatively rigid surface for a range of shear rates

and again, the micro-carriers can thus be induced to deliver their

contents to specific locations on the substrate. We note that the

latter considerations are particularly important for drug delivery
This journal is ª The Royal Society of Chemistry 2012



applications. More generally, our findings can provide design

rules for tailoring the efficacy of micro-carriers in transporting

the encapsulated species to localized sites or broad regions on

a substrate.

Acknowledgements

ACB gratefully acknowledges financial support from the DOE.

References

1 O. I. Vinogradova, J. Phys.: Condens. Matter, 2004, 16, R1105–
R1134.

2 N. Maurer, D. B. Fenske and P. R. Cullis, Expert Opin. Biol. Ther.,
2001, 1, 1–25.

3 B. M. Discher, Y.-Y. Won, D. S. Ege, J. C.-M. Lee, F. S. Bates,
D. E. Discher and D. A. Hammer, Science, 1999, 284, 1143–1146.

4 A. Alexeev, R. Verberg and A. C. Balazs, Macromolecules, 2005, 38,
10244–10260.

5 A. Alexeev, R. Verberg and A. C. Balazs, Phys. Rev. Lett., 2006, 96,
148103.

6 A. Alexeev and A. C. Balazs, Soft Matter, 2007, 3, 1500–1505.
7 A. Alexeev, R. Verberg and A. C. Balazs, Langmuir, 2007, 23, 983–
987.

8 O. B. Usta, A. Alexeev and A. C. Balazs, Langmuir, 2007, 23, 10887–
10890.

9 G. V. Kolmakov, R. Revanur, R. Tangirala, T. Emrick, T. P. Russell,
A. J. Crosby and A. C. Balazs, ACS Nano, 2010, 4, 1115–1123.

10 S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond,
Oxford University Press, Oxford, 2001.

11 G. A. Buxton, C. M. Care and D. J. Cleaver, Modell. Simul. Mater.
Sci. Eng., 2001, 9, 485–497.

12 G. I. Bell, Science, 1978, 200, 618–627.
13 M. Dembo, D. C. Torney, K. Saxman and D. Hammer, Proc. R. Soc.

London, Ser. B, 1988, 234, 55–83.
14 S. K. Bhatia, M. R. King and D. A. Hammer, Biophys. J., 2003, 84,

2671–2690.
15 V. Pappu and P. Bagchi, Comput. Biol. Med., 2008, 38, 738–753.
16 G. A. Buxton, R. Verberg, D. Jasnow and A. C. Balazs, Phys. Rev. E,

2005, 71, 056707–18.
17 S. Duki, G. V. Kolmakov, V. V. Yashin, T. Kowalewski,

K. Matyjaszewski and A. C. Balazs, J. Chem. Phys., 2011, 134(8),
084901.

18 Y. H. Qian, D. D’Humi�eres and P. Lallemand, Europhys. Lett., 1992,
17, 479–484.

19 (a) R. Cornubert, D. D’Humieres and D. Levermore, Phys. D, 1991,
47, 241–259; (b) P. Lallemand and L.-S. Luo, Phys. Rev. E, 2000, 61,
6546–6562.

20 For the model parameters used in the simulations, we never approach
the regime where overlapping is possible and thus, it is not necessary
to use a potential that exhibits a divergence (as the separation distance
This journal is ª The Royal Society of Chemistry 2012
approaches zero). Namely, the shear rates are sufficiently small that
the distance between the capsule and the substrate nodes varies
around its equilibrium value. Therefore, a description of the
potential at distances much shorter than the latter equilibrium
distance is not essential in our simulations.

21 M. D. Ward, M. Dembo and D. A. Hammer, Biophys. J., 1994, 67,
2522–2534.

22 E. Evans and K. Ritchie, Biophys. J., 1997, 72, 1541–1555.
23 T. Strunz, K. Oroszlan, I. Schumakovitch, H.-J. G€untherodt and

M. Hegner, Biophys. J., 2000, 79, 1206–1212.
24 M. J. Buehler, S. Keten and T. Ackbarow, Prog.Mater. Sci., 2008, 53,

1101–1241.
25 M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez and H. E. Gaub,

Science, 1997, 276, 1109–1112.
26 T. J. Wickham, R. R. Granados, H. A. Wood, D. A. Hammer and

M. L. Shuler, Biophys. J., 1990, 58, 1501–1516.
27 B. Zhang, T. S. Lim, S. R. K. Vedula, A. Li, C. T. Lim and

V. B. C. Tan, Biochemistry, 2010, 49, 1776–1786.
28 R. Alon, D. A. Hammer and T. A. Springer, Nature, 1995, 374, 539–

542.
29 M. R. King and D. A. Hammer, Proc. Natl. Acad. Sci. U. S. A., 2001,

98, 14919–15924.
30 L. S.-L. Cheung, X. Zheng, L. Wang, J. C. Baygents, R. Guzman,

J. A. Schroeder, R. L. Heimark and Y. Zohar, J. Micromech.
Microeng., 2011, 21, 054033.

31 A. Fery, F. Dubreuil and H. M€ohwald, New J. Phys., 2004, 6, 18.
32 V. T. Moy, E.-L. Florin and H. E. Gaub, Science, 1994, 266, 257–259.
33 A. P. Wiita, S. R. K. Ainavarapu, H. H. Huang and J. M. Fernandez,

Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 7222–7227.
34 M. A. Hjortso and J. W. Roos (ed.), Cell adhesion: Fundamentals and

Biotechnological Applications, Marcel Dekker, 1995.
35 C. Andersen, M. Jordy and R. Benz, J. Gen. Physiol., 1995, 105, 385–

401.
36 M. A. Hachem, E. N. Karlsson, E. Bartonek-Rox�a, S. Raghothama,

P. J. Simpson, H. J. Gilbert, M. P.Williamson and O. Holst, Biochem.
J., 2000, 345, 53–60.

37 C. Obrecht, F. Kuznik, B. Tourancheau and J.-J. Roux, Comput.
Math. Appl., 2011, 61(12), 3628–3638.

38 A. J. C. Ladd, J. Fluid Mech., 1994, 271, 285–309.
39 J. Latt and B. Chopard, Math. Comput. Simul., 2006, 72, 165–168.
40 G. B. Zibari, M. F. Brown, D. L. Burney, N. Granger and

J. C. McDonald, Transplant. Proc., 1998, 30, 2327–2330.
41 K.-C. Chang, D. F. J. Tees and D. A. Hammer, PNAS, 2000, 97,

11262–11267.
42 S. M. Ross, Introductory statistics, vol. 1, Elsevier Academic Press,

2005.
43 The number of breaking events during the time it takes the capsule to

displace its own radius is a meaningful characteristic of the system;
however, this parameter is well defined only in the steady rolling
regime, which takes place at sufficiently high values of koff. Hence,
to present the data in Fig. 7 and 9, we normalize koff using the
reference shear rate _g0; the latter combination is well defined in all
of the observed regimes.
Soft Matter, 2012, 8, 77–85 | 85


	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate

	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate

	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate
	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate


