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Abstract

Particle—polymer nanocomposites often exhibit mechanical properties described poorly by
micromechanical models that include only the particle and matrix phases. Existence of an
interfacial region between the particle and matrix, or interphase, has been posited and indirectly
demonstrated to account for this effect. Here, we present a straightforward analytical approach
to estimate effective elastic properties of composites comprising particles encapsulated by an
interphase of finite thickness and distinct elastic properties. This explicit solution can treat
nanocomposites that comprise either physically isolated nanoparticles or agglomerates of such
nanoparticles; the same framework can also treat physically isolated nanoparticle aggregates or
agglomerates of such aggregates. We find that the predicted elastic moduli agree with
experiments for three types of particle—polymer nanocomposites, and that the predicted
interphase thickness and stiffness of carbon black—rubber nanocomposites are consistent with
measured values. Finally, we discuss the relative influence of the particle—polymer interphase
thickness and stiffness to identify maximum possible changes in the macroscale elastic

properties of such materials.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For a range of polymer composites comprising particle fillers,
it has been posited that an interphase region [I, 2] of
nanometre-scale thickness ¢ arises due to complex interactions
at the particle—polymer matrix interface [3]. For filler
particles of >pum-scale radius r, the contribution of such a
thin interphase to the elastic properties of the composite is
negligible. However, for particles of nm-scale radius, this
potential contribution increases due to increased interfacial
surface area [4—8]. For example, for #/r = 0.5, the interphase
volume fraction exceeds 200% of the particle volume fraction,
such that the macroscale elastic properties are expected to be
dominated by those of both the particles and the interphases.
Consequently, analytical treatment of composites com-
prising interphases has received significant attention. For
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example, Lutz and Zimmerman [9] and Weng and Ding [10]
explored the mechanical contributions of an interphase by
solving for the stress field and effective bulk moduli of
composites containing spherical particles, embedded within
inhomogeneous matrices that exhibited a particle distance-
dependent power law gradation in elastic moduli. Herve and
Zaoui [11] proposed a model with an n-layered spherical
inclusion embedded in an infinite matrix, and Nie and
Basaran [12] instead replaced the particle-interphase region
with an effective particle; both groups applied hydrostatic
pressure and simple shear to obtain a series of parameterized
equations from which bulk and shear elastic moduli could
be calculated. However, for nearly all the existing analytical
models of composite homogenization, predictions of elastic
properties were obtained by solving the elastic governing
equations under those specific applied stress states [9-12]. As
a result, the expressions for the elastic constants are highly
parameterized and coupled, such that one must iteratively infer
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Figure 1. Schematic method to estimate the elastic properties of a composite comprising particles surrounded by interphases. (a) For low
volume particle volume fractions approximating the dilute limit, the actual composite comprises particles surrounded by interphases that are
embedded within a matrix. (b) The elastic properties of the effective particle are obtained by representing this phase via an infinite volume
that is fully packed with particle—interphase regions of decreasing diameter and identical shape. (c) The particle—interphase regions are
mechanically equated to effective particles in a polymer matrix. (d) The macroscale composite is represented by an effective medium that is
strain energy equivalent to the effective particle-matrix composite. (e) For high particle volume fractions or strong
particle—interphase—particle interactions, agglomeration of nanoparticles may occur. The topology of the composite is such that the polymer
may surround interphase-encapsulated nanoparticles, or the interphase-encapsulated nanoparticles may surround the polymer. In other words,
no one phase fully encompasses the other phase. The particle region shown in (e) can in fact represent a single nanoparticle or aggregates of
such nanoparticles; aggregates may be physically isolated or agglomerated. (f) The particle—interphase (or aggregate—interphase) regions are

mechanically equated to effective particles. To create the effective medium (d), the elastic properties of (f) are represented by a weighted
volume fraction of the polymer matrix, where (g) is the polymer acting as a continuous matrix around isolated effective particles, and (h) is
the effective particles acting as a continuous matrix around isolated polymer inclusions.

the effects of interphase stiffness, thickness, or particle volume
fraction on the composite response. Further, such approaches
generally require new analytical derivations for changes in
particle shape. More importantly for the consideration of
nanocomposites, the nature of these analytical approaches
is constrained to the dilute limit of physically isolated
particles. In actuality, the high relative surface area of
nanoparticles often promotes aggregation or agglomeration at
higher particle volume fractions, which is incommensurate
with the assumptions of these analytical approaches.

Here, we describe a straightforward method to estimate
the effective elastic properties of composites comprising
spherical particles surrounded by mechanically distinct
interphases, explicitly in terms of the elastic properties and
physical dimensions of the particle-polymer composite. We
show that this approach can be applied to nanocomposites
comprising a low volume fraction of well-dispersed and
spatially isolated nanoparticles, as well as nanocomposites
comprising regions of agglomerated nanoparticles; these
agglomerated regions exhibit complex geometries that may
encapsulate the polymer matrix. Depending on the details
of the particle-polymer interactions and volume fraction of
nanoparticles, particles may aggregate to form geometrically
self-similar regions surrounded by interphases; this same
approach can also be applied to nanocomposites comprising
well-dispersed nanoparticle aggregates and to agglomerates of
those aggregates. Application of our model to experimental
measurements for oxide nanoparticle—epoxy nanocomposites
and to carbon black nanoparticle—elastomer nanocomposites
shows good agreement in the prediction of macroscale elastic
moduli. Further, prediction of the interphase thickness and

elastic properties agrees well with available measurements for
elastomeric nanocomposites. This explicit relation between
interphase and macroscale properties also elucidates the
relative contributions of interphase thickness and stiffness to
macroscopic elastic moduli, aiding the design of nanoparticles
and nanocomposites for optimized mechanical performance.

2. Theoretical model

Figure 1 schematizes the theoretical model by which we
relate the nanocomposite properties to those of the constituent
phases, for both the isolated and the agglomerated cases.
We treat spherical nanoparticles as our case of interest and
for comparison with experiments; other particle geometries
such as ellipses and tubes can be easily accommodated
through this same approach, by replacing the corresponding
Eshelby tensor of the particle inclusion [13—-15]. Further,
we note that this general approach is not restricted to
particles of nanoscale diameter, but is discussed here in
terms of nanoparticles because the potential mechanical
contributions of nanometres-thick interphases are much greater
in particle—polymer nanocomposites as compared to micro- or
macrocomposite materials.

To describe the nanoparticle-interphase—matrix compos-
ite, we approximate all particles to be of radius r and
interphase thickness . The nanoparticle—interphase regions
are thus represented as core—shell structures embedded in
an infinite matrix.  All interfaces between particles and
interphases and between interphases and the surrounding
matrix are assumed perfectly bonded, whereby complexities
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such as macromolecular chain entanglement or imperfect
bonding are reflected in the apparent elastic properties of
the interphase. This description assumes the mechanical
differences between the nanoparticle and matrix to exist
over a relatively sharp and finite region, conceptualizing
this transition as an actual ‘interphase’ or distinct annulus
of defined nm-scale thickness and elastic properties. This
approximation is consistent with recent experiments visual-
izing mechanically distinct interphases surrounding particles
in elastomers [16, 17]. However, we note that in actual
polymeric nanocomposites, the relative contributions of these
interactions and the uniformity of interphase thickness depend
on particle and polymer chemistries, processing details, and
physical environments [18, 19].

2.1. Isolated case

For nanocomposites of low nanoparticle volume fraction,
which we term the isolated case, the particles can be
well dispersed and thus the particle—interphase regions are
physically isolated (figure 1(a)). In this isolated case,
estimation of the effective elastic properties of the composite
then pivots on two steps. First, the particle—interphase
region is replaced (figure 1(b)) by an effective particle of
identical size and shape (figure 1(c)). The elastic properties
of the effective particle and particle—interphase structure are
energetically equivalent, such that the stored elastic strain
energies of these regions should be equivalent for a given
stress. In other words, the elastic properties of these effective
particles are represented by an effective particle medium
(figure 1(b)) comprising only the particle—interphase regions;
this medium is constructed by filling the space between
optimally packed particle—interphase regions completely with
particle—interphase regions of decreasing diameters. This
effective particle medium is required to calculate the elastic
properties of the classical inclusion-infinite matrix composite:
micromechanical inclusion models assume an infinite matrix,
but the interphase representation as a shell is finite. In contrast
to previous analytical models that solve the elastic governing
equations under specific boundary conditions [11, 12], here
we obtain the elastic constants of the effective particles by
incorporating these within a composite system. Figure 1(b)
can then be regarded as a composite system (particles as
inclusions and interphase material as matrix) possessing the
same elastic properties as the particle—interphase structures
and as the effective particles. In the second step required
to represent the macroscopic response of the nanocomposite
material, the composite comprising the effective particles is
represented by a homogeneous effective medium (figure 1(d)).

The elastic properties of effective particles can thus be
directly obtained by existing micromechanical estimations.
We adopt the interaction direct derivation (IDD) [13, 14, 20]
because of its high accuracy in consideration of inclusion
interactions. For the elastically isotropic particle and
interphase, the bulk modulus Kgp and shear modulus Ggp of

the effective particles are represented as

(Ki/Kp — Da )‘1
Kep = Ky | 1
er = < T T —a) (1 — 20 (Ki/Kr — 1)
_ (Gi/Gp — Da -
Gee = 01 <l T 80— a1+ w)(Gr/Gr — 1))
i

where v is Poisson’s ratio, K is the bulk modulus, G is the
shear modulus, and the subscripts I and P denote the interphase
and particle, respectively. The parameters 7 and §; reflect
the Eshelby tensor of the particle; for spherical particles,
m = 2/3( — ) and & = (7 — Svy)/(15(1 — v})). The
volume fractions of the particle and interphase are fp and
f1, respectively. In the particle—interphase extended region
(figure 1(b)), the volume fraction of the particle in (b) is
then a = fo/(fi + fp) = @/t + r))>. Note that for
nanocomposites in which the interphase elastic properties vary
over a considerable distance according to a specified function,
differential techniques [21] can be applied to obtain the elastic
moduli of the effective particle based on equation (1).

At low nanoparticle volume fractions, the elastic constants
of the entire nanocomposite (K, G) or (E, v) shown in
figure 1(d) can also be obtained by equation (1). In this dilute
limit, this nanocomposite comprises isolated effective particles
within a matrix, of volume fraction fgp = f1 + fp = fp/a.
In this application of equation (1), the particle properties (Kp,
Gp, vp, a) are replaced with those of the effective particles
(Kgp, Ggp, Vgp, fEp), and the interphase properties (Ky, Gy, vr)
are replaced with those of the matrix (Ky,, G, vm). Since the
effective particles are also spherical, the parameters 1 and §;
are changed to n, and 8, by replacing vy with vy,. The elastic
constants (K, G) of the nanocomposite at low volume fraction
are obtained as follows:

(Km/Kgp — 1) fep )1
1+ (1 — fep)(1 — 20) (Kin/Kgp — 1)

(Gu/Gep — 1) fip )1
14 0n(1 = fep)(1 + v0)(Gn/Gep — 1) !
@)

To compare with experiments that typically report E and
v, we extend the assumption of elastic isotropy to calculate
Young’s modulus £ = 9KG/(3K + G) and v = (3K —
2G)/(6K +2G).

At increased volume fraction of nanoparticles, significant
aggregation may occur. Note that if these aggregates are
highly dispersed and isolated from each other, this ‘isolated
nanoparticle’ framework is also applicable; the nanoparticles
in figure 1(a) would then be represented by the dimensions and
elastic properties of these aggregates.

K:Km<1+

G:Gm<1+

2.2. Agglomerated case

The above results are based on the assumption that interphase-
encapsulated nanoparticles are physically isolated from each
other. In fact, the isolated case can also describe
nanocomposites comprising aggregates of nanoparticles,
wherein each aggregate is encapsulated by an interphase and is



Nanotechnology 22 (2011) 165703

F Deng and K J Van Vliet

physically isolated from other such aggregates via the matrix.
As the nanoparticle volume fraction increases or the particle—
polymer interactions are modified, however, interphase-
encapsulated nanoparticles and nanoparticle aggregates may
exhibit close spatial proximity. In such cases, the potential
for connectivity among nanoparticle aggregates (or among
nanoparticles) via the interphase breaks the concept of
geometric self-similarity that is inherent to the isolated case;
see figure 1(e). This connectivity among aggregates is
sometimes termed agglomeration [22]. We thus refer to
this as the agglomerated case, which implies a physical
connectivity among the interphase-encapsulated fillers that is
geometrically complex (i.e., dissimilar from the nanoparticle
shape or resulting in closed paths that occlude the polymer
matrix). In this configuration, the topology of the composite is
such that some regions may comprise nanoparticle aggregates
(or nanoparticles) surrounded by polymer, and other regions
may comprise polymer surrounded by these nanoparticle
aggregates (or nanoparticles). In other words, no one phase
fully encompasses the other phases [17]. The effective
particles in the agglomerated case are mechanically equivalent
to the interphase-encapsulated nanoparticle aggregates (or
the interphase-encapsulated nanoparticles), as indicated in
figure 1(f). The connectivity among such nanoparticle
aggregates (or among such nanoparticles) via the interphase
between them and around them enables this equivalence to
such an effective particle domain.

In this agglomerated case (figures 1(e) and (f)), the
topology of the composite is such that one phase does not fully
encompass the other phase, and does not require an assumption
of full percolation of either phase. For such complex composite
morphologies, other micromechanical modelling approaches
such as the self-consistent method (SCM) can be considered.
However the solutions of that approach are implicit, and
this renders the SCM inappropriate for studies seeking to
infer interphase properties of phase thickness and stiffness via
macroscale characterization of the composite elastic modulus.
Here, we treat the polymer and the effective particles in the
same manner (figures 1(g) and (h)). Figure 1(g) represents
the elastic response of the polymer acting as a matrix that
surrounds the effective particles; figure 1(h) represents the
elastic response of the effective particles acting as a phase
that surrounds the polymer inclusions. To smoothly connect
these two extreme cases and thus treat the intermediate
agglomerated case, we adopt the Voigt approximation as a
linear superposition weighted by the phase volume fraction.
The stiffness tensor of the composite is then a weighted
summation of the stiffness tensors of these two extremes,
according to the volume fraction of the polymer matrix (for
figure 1(g)) and of the effective particles (for figure 1(h)).
Thus, the elastic properties of the nanocomposite in the
agglomerated case (Eqgq, Vagg) are obtained as follows:

Kugg = (1 - fEP)K"'fEPK/ Gugg = (1 - fEP)G+fEPG/
3)

Here (K, G) are the elastic constants of the effective
medium given by the isolated case where the polymer
surrounds the effective particle inclusions in figure 1(g). The

elastic constants (K', G”) represent the effective medium given
by the extreme where the effective particles surround the
polymer inclusions in figure 1(h). Note that the process to
calculate (K, G) and (K’, G’) is identical to that given in the
discussion of equation (2), except that the polymer and particle
subscripts are replaced with the appropriate surrounding phase
and inclusion phase subscripts. The corresponding Young’s
modulus of the composite for the agglomerated case E,g, is
also calculated from the bulk and shear moduli as E,,, =
9K g5 Gage/ (3K gy + Gagg). We note that aggregation and/or
agglomeration will lead to local anisotropy in the elastic
response, but that the macroscopic elastic properties of the
nanocomposite are reasonably assumed to be isotropic if the
aggregates or agglomerates are distributed homogeneously and
of average physical dimensions much less than the sample
dimensions.

3. Results and discussion

We first applied this model to the reported macroscale
measurements of Young’s elastic moduli E for three types
of nanocomposites comprising small nanoparticle volume
fractions (<10 vol% of either Al,O3 or TiO, nanoparticles
in an epoxy matrix). Figure 2(a) shows experimentally
measured Ecomposie fOr these three oxide nanoparticle-epoxy
composites, each measured over a range of particle volume
fractions [23-25]. Over this range of low volume fractions,
such particles are generally well dispersed and the isolated
model framework (see figure 1(a) and equation (2)) can be
reasonably assumed. Our model requires input of the matrix
and particle elastic constants, and of the particle radius;
these were reported in [23-25] as indicated in the caption of
figure 2. If the existence of an interphase region is neglected
entirely, our model comprising only the epoxy and oxide
phases (represented in figure 2(a) as dashed lines) poorly fits
each of these experimental systems. We assumed an interphase
of uniform elastic properties to exist, as there is no reported
information quantifying gradients in such epoxy interphase
properties, and that these elastic properties differed from those
of both the polymer matrix and the oxide particles. Best fitting
of our model to each of these three nanocomposite systems
gives predictions of the measured composite modulus when an
interphase of fitted thickness and stiffness is included (solid
lines). The values of interphase thickness 7 and elastic modulus
E were obtained via the best fit of this model (i.e., the set
(t, Ep) obtained via least squares nonlinear regression with
respect to the measured Ecomposie) for each of these three
composites. We find that + = 36 nm and E; = 40 GPa
for alumina—epoxy nanocomposite 1 [23]; + = 10 nm and
E; = 30 GPa for alumina—epoxy nanocomposite 2 [24]; and
t = 19 nm and E; = 22 GPa for the titanium oxide—
epoxy nanocomposite [25]. Thus, it is consistently predicted
that the interphase region is approximately one order of
magnitude stiffer than the bulk epoxy. Although no direct
measurement of interphase thickness or stiffness has been
reported for these composites, indirect estimates from a range
of experiments also suggest this level of interphase stiffening
and thickness [26, 27].
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Figure 2. Comparison of Young’s modulus as measured
experimentally (points) and estimated from the present model (lines),
for two classes of polymer—particle composites. (a) Results for oxide
nanoparticle—epoxy composites from [23-25], with nanoparticle
radius indicated in the legend. The elastic properties (Young’s
modulus and Poisson’s ratio) of the particle and matrix phases were
assumed as Etip, = 283 GPa and vyip, = 0.28, Eaj,0, = 283 GPa
and va,0, = 0.24; E,, of the epoxy matrices was taken from the
corresponding measured values reported in [23-25], and vy, of the
epoxy was assumed as 0.364. The dashed lines are theoretically
estimated Ecomposite USing the isolated nanoparticle model in the
absence of an assumed interphase. The solid lines are Ecompositc When
an assumed interphase is included in the isolated nanoparticle model.
The magnitudes of interphase thickness and stiffness corresponding
to the best-fit nonlinear regressions to these data for each composite
system are indicated in the text. (b) Results for hydrogenated nitrile
butadiene rubber (HNBR)—carbon black nanocomposite at 35 °C
from [17] indicate nonlinear increases with increasing carbon black
volume fraction. The carbon black aggregate diameter was reported
as 56 nm in experiments [17]. The elastic modulus of the HNBR
matrix was reported as Eynpr = 3 MPa in [17], and vgngr Was
assumed as 0.499; the elastic properties of CB were assumed as
equivalent to graphite, Ecg = 10 GPa and vcg = 0.3. The dashed
line indicates model predictions in the absence of an interphase and
absence of effective particle and CB nanoparticle contact (no
interphase in the isolated case); the dash-dotted line indicates model
predictions in the presence of an interphase and absence of
agglomeration (isolated interphase-encapsulated nanoparticle
aggregate) with fitted interphase thickness # = 26 nm and stiffness
Egr = 580 MPa; the dotted line indicates model predictions in the
absence of an interphase and the presence of CB nanoparticle contact
(extreme agglomerated case with no interphase); and the solid line
indicates model predictions in the presence of an interphase that
surrounds each nanoparticle aggregate (agglomerated case consistent
with experiments) with fitted interphase thickness # = 22 nm and
stiffness Eggr = 37 MPa. The magnitudes of interphase thickness and
stiffness corresponding to the best-fit solid line are indicated in the
text.

We also applied this theoretical model to carbon black—
rubber nanocomposites comprising up to 28 vol% carbon black
(CB) nanoparticles. For such high volume fractions of carbon
black in this hydrogenated nitrile butadiene rubber (HNBR)-
matrix, particle aggregation and agglomeration are typically
observed [16, 17]. To efficiently cover the entire compositional
range, the agglomerated case framework (see figure 1(e) and
equation (3)) is advantageous. We note that the numerical
predictions of the agglomerated case will approach those of
the isolated case at very low nanoparticle volume fractions
(fp — 0). In these CB—rubber nanocomposites, the concept
of a ‘bound rubber’ interphase of distinct elastic modulus has
been widely postulated and inferred from both mechanical
and thermal analyses [17, 22]. Although the HNBR matrix
elastic properties and the carbon black aggregation diameter
are experimentally measured and reported (figure 2), the elastic
constants of carbon black (Ecg, vcg) are not well defined
experimentally; here, those of graphite were assumed (Ecg =
10 GPa, vcg = 0.3). Figure 2(b) shows successful agreement
of theoretical results and these experimental data. We find
that 1 = 22 nm and Egg = 37 MPa, via a best-fit nonlinear
regression to the measured E¢omposite.- Moreover, the interphase
thickness and Young’s elastic modulus can be computed as
a range over which this nonlinear increase of Ecomposie With
increasing vol% carbon black is a reasonably good fit (R?
optimization criterion 0.97 < R? < 1); we then obtain
as a range 30 MPa < Er < 58 MPa for corresponding
interphase thickness ¢ ranging from 27 to 14 nm. (In other
words, this best-fit stiffness and thickness of the interphase is
within a narrow range of more compliant/thicker interphases
and stiffer/thinner interphases.) Note that this best fitting
of the model does not bound or require the stiffness of the
interphase to be greater than that of the matrix or less than
that of the carbon black nanoparticle aggregates. Importantly,
both the best-fit and this range of interphase stiffness and
thickness agree well with that measured experimentally via
torsional harmonic AFM imaging and mechanical analysis
(Egr = 53 £ 11 MPa and ¢+ = 19 £ 8 nm [17]). Here,
we remark that in the agglomerated case appropriate for this
elastomeric nanocomposite, the presence of an interphase is
widely hypothesized and is supported by other extremes that
can be tested by this model. For example, in the absence
of a mechanically dissimilar interphase and the absence of
nanoparticle contact, the composite would revert to the isolated
and interphase-free nanoparticle model (dashed line, which
underpredicts the measured composite stiffness). Conversely,
in the absence of an interphase and under the assumption that
the CB nanoparticles are in direct mechanical contact, the
composite would be much stiffer than observed experimentally
(dotted line). In such a prediction, the agglomerated case
framework is applied by equating the nanoparticle aggregates
with the effective particles. Further, if we assume the presence
of interphase and absence of agglomeration (dashed-dotted
line), the best-fit interphase thickness and stiffness values are
t = 26 nm and Egr = 580 MPa. As this interphase
stiffness is one order of magnitude greater than that measured
experimentally [17], this indicates that the assumption of
isolated, interphase-surrounded nanoparticle aggregates is not
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applicable in this particular case of high nanoparticle volume
fraction nanocomposites. However, if we assume that the
nanoparticle aggregates are surrounded by an interphase and
that these interphase-encapsulated aggregates are partially
agglomerated, our model (solid line) successfully captures
the experimental trend and the magnitudes of both interphase
stiffness and thickness (+ = 22 nm and Egg = 37 MPa).

We note that the agglomerated case can seamlessly
span very low and very high levels of agglomeration (of
nanoparticles or of aggregates). However, this case does not
include the possibility that some nanoparticles are aggregated
(or that some aggregates are agglomerated) while other
nanoparticles (or aggregates thereof) are isolated. If one is
interested in explicitly treating a range of aggregate diameters,
including individual nanoparticles coexisting with aggregated
nanoparticles, this is fully accessible via a modification of
the isolated case described above. Briefly, equation (1)
can be integrated with respect to effective particle diameter
over the limits of interest [20]. This could be implemented
as a weighted sum of discrete average diameters of the
effective particles, and the interphase thickness would be
assumed invariant with effective particle diameter. However,
connectivity among the interphase-encapsulated aggregates
(agglomeration) would not be accessible with this approach.
Thus, if one’s nanocomposite of interest exhibits such
agglomeration among aggregates (or among nanoparticles), the
agglomerated model is applicable.

Beyond the prediction of a given nanocomposite’s
interphase existence, thickness, and stiffness, this model
also provides a means to quantify how further changes in
the interphase thickness or stiffness surrounding dispersed
nanoparticles would alter the composite elastic modulus.
To consider the relative effects of interphase thickness
and stiffness on the nanocomposite elastic modulus, we
systematically varied ¢ or Ey using the isolated case framework
as an example. Figure 3(a) summarizes the effect of
varied relative interphase stiffness Ej/Ep for a constant
relative interphase thickness ¢/r. Figure 3(b) summarizes
the effect of varied interphase thickness #/r for constant
E;/Ep. As anticipated, an increase in either interphase
thickness or Young’s modulus increases the elastic modulus of
the composite in a nonlinear fashion. This comparison also
makes it clear that stiffening of the interphase is characterized
by descending reinforcement, whereas thickening of the
interphase is characterized by ascending reinforcement. That
is, for a given interphase thickness, increases in Ej lead to
a rapidly saturating stiffness of the composite. In contrast,
for a given interphase stiffness, further increases in ¢ lead to
increasing rates of stiffening at the composite level. Of course,
the maximum interphase thickness is limited by the particle
volume fraction as (1 + ¢/7)® < 1/fp. In practice, for a
given polymer—particle nanocomposite it may not be possible
to significantly modify the interphase thickness or stiffness
(e.g., through variation of particle surface chemistry or
polymer matrix reactivity [28]). However, the parameterization
represented in figure 3 allows one to determine whether the
experimentally attainable variation in either Ey or f will achieve
the desired macroscopic stiffening of such nanocomposites.

—_
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Figure 3. The effects of the interphase Young’s modulus and
thickness on the Young’s modulus of the nanocomposite, as
determined for the isolated case described in the text. (a) Interphase
stiffness relative to particle stiffness £/ Ep is varied for a given
relative interphase thickness 7/r. (b) Interphase thickness relative to
particle radius 7 /r is varied for a given relative interphase stiffness.
The mechanical contribution of the interphase decreases with
increasing relative interphase stiffness Ey/Ep, and increases along
with increasing normalized interphase thickness 7/r. In both (a)
and (b), the elastic constants of the matrix and particles were
assumed as E,,, = 3 GPa, Ep = 100 GPa, and v,, = vp = 0.36.

Given that both the isolated case and the agglomerated
case were demonstrated to work well for specific examples,
one may question which model to implement for his/her
nanocomposite of interest. Here, the choice lies not in the
range of nanoparticle volume fraction considered, but rather
in the composite microstructure. If agglomeration among the
nanoparticles or among the aggregates is observed, then the
agglomerated case should be implemented; this could occur
for even low nanoparticle volume fractions due to complexities
among particle—particle and particle-matrix interactions. The
connectivity and loss of geometric self-similarity in such
agglomerations cannot be treated by the isolated case. Thus,
inspection of the final composite microstructure (e.g., via
transmission electron microscopy or tomography) will aid
in the appropriate choice of model for such predictions of
interphase-dependent elastic properties.

4. Conclusions

In conclusion, an analytical approach is proposed to estimate
the elastic properties of particle-reinforced nanocomposites
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that exhibit potential mechanical contributions from the
particle—polymer interphase. This approach provides explicit
solutions to predict the stiffness and thickness of the
interphase from measurements of the macroscopic elastic
moduli of the composites. Successful agreement is shown for
particle—polymer nanocomposites in which the nanoparticles
or particle aggregates are well dispersed and physically
isolated from each other, and for nanocomposites in which the
nanoparticles or nanoparticle aggregates may locally surround
the polymer phase. Furthermore, the relative contributions of
interphase thickness and stiffness are compared for composites
comprising well-dispersed nanoparticles, demonstrating how
the mechanical contributions of such an interphase vary
nonlinearly with increasing volume fraction or elastic modulus
of the interphase. Applications of this tractable model can thus
enable the design of polymer nanocomposites and polymer—
particle interphases with anticipated elastic properties.
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