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ABSTRACT: The extent to which the intrinsic mechanical properties of polymer fibers depend on physical
size has been a matter of dispute that is relevant to most nanofiber applications. Here, we report the elastic
and plastic properties determined from molecular dynamics simulations of amorphous, glassy polymer
nanofibers with diameter ranging from 3.7 to 17.7 nm. We find that, for a given temperature, the Young’s
elastic modulus E decreases with fiber radius and can be as much as 52% lower than that of the corresponding
bulk material. Poisson’s ratio v of the polymer comprising these nanofibers was found to decrease from a
value of 0.3 to 0.1 with decreasing fiber radius. Our findings also indicate that a small but finite stress exists on
the simulated nanofibers prior to elongation, attributable to surface tension. When strained uniaxially up to a
tensile strain of ¢ = 0.2 over the range of strain rates and temperatures considered, the nanofibers exhibit a
yield stress oy between 40 and 72 MPa, which is not strongly dependent on fiber radius; this yield stress is

approximately half that of the same polyethylene simulated in the amorphous bulk.

Introduction

Mechanical properties of polymeric nanostructures are of
critical importance in a wide variety of technological applica-
tions. In particular, polymer nanofiber-based nonwoven materi-
als are subject to different forces and deformations in
applications such as filtration media,' tissue engineering,” bio-
medical applications,® composites,* and other industrial applica-
tions.” Such applied forces and resulting displacements may result
in permanent deformation and eventually mechanical failure of
individual nanofibers. The properties of the nonwoven materials
are convoluted functions of the inherent properties of these fibers
as well as the organization of and interactions among fibers
within the nonwoven material. Therefore, it is desirable to
determine independently the mechanical properties of single
nanofibers.

In recent years, various attempts have been made to quantify
the elastic properties of isolated polymer fibers of diameter d <
1 um via direct experimental measurements.®"'” Mechanical
characterization techniques that have been developed to test
individual polymer fibers include uniaxial tensile loading as well
as bending and indentation of individual fibers using atomic force
microscopy (AFM) cantilevered probes to impose deformation.
For example, the effects of processing conditions on mechanical
properties of electrospun poly(r-lactide) (PLLA) nanofibers with
diameters of 610 and 890 nm were investigated via tensile testing.”
Higher rotation rate of the collection roller correlated with higher
tensile Young’s elastic modulus £ and strength of the nanofibers,
which was attributed to the ordered structure developed during
the collection process.” Bellan et al. measured the Young’s elastic
moduli of poly(ethylene oxide) (PEO) fibers with diameters
80 nm < d <450 nm using an AFM cantilevered probe to deflect
the suspended fibers and reported E in significant excess of that
reported for bulk PEO.® The authors attributed this enhanced
stiffness to the molecular orientation of PEO chains within the
fibers.® Tensile testing of poly(e-caprolactone) (PCL) nanofibers
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with diameters 1.03 yum < d < 1.70 um to the point of mechanical
failure showed that fibers of smaller diameter exhibited higher
fracture strength but lower ductility (strain to failure).'® Mechan-
ical properties of single electrospun nanofibers composed of PCL
and poly(e-caprolactone-co-ethylethylene phosphate) (PCLEEP)
were also measured under uniaxial tension, indicating an increase
in both stiffness and strength as the fiber diameter decreased from
5 um to ~250 nm."" Chew et al. also found that E of these PCL
nanofibers were at least twice that of PCL thin films of compar-
able thickness."' Recently, Wong et al. reported an abrupt
increase in tensile strength and stiffness of these PCL fibers below
fiber diameter of 1.4 um and attributed this to improved crystal-
linity and molecular orientation in fibers of smaller diameter.'
Young’s moduli of electrospun nylon-6 nanofibers were found to
increase from 20 to 80 GPa as the fiber diameter decreased from
120 to 70 nm."? In separate tensile studies on electrospun nylon-
6,6 nanofibers, E was reported to increase 3-fold for fibers with
diameters <500 nm.'® No significant increase in degree of
crystallinity or chain orientation accompanied this increase in
E.'® Using scaling arguments, these authors reasoned that this
size-dependent stiffening effect was due to the confinement of a
supramolecular structure, consisting of molecules with correlated
orientation, comparable to the nanofiber diameter. Finally, the
shear elastic modulus G of glassy electrospun polystyrene (PS)
fibers of 410 nm < d <4 ym was estimated using an AFM probe
via shear modulation force spectroscopy of the fiber surface and
also reported to increase with decreasing fiber diameter.'” This
trend was attributed to molecular chain alignment frozen in
during the electrospinning process. When functionalized clay
was added to these PS nanofibers, G of the fibers was further
increased, although the stiffening mechanism remains unclear.!”
Importantly, although these reports generally indicate increasing
elastic modulus and strength with decreasing fiber diameter, all of
these fibers (with the exception of the PS fibers of ref 17) are also
semicrystalline.

Although these experimental methods can provide informa-
tion on the Young’s elastic modulus, E, yield strength, oy, and
fracture strength, o, of nanofibers, several challenges exist that
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limit the precision and accuracy of these mechanical property
measurements. These challenges include the required force reso-
lution, the difficulty of preparing, isolating, and manipulating
such small fibers without compromising them, and the dearth of
suitable modes of imaging or displacement measurements that do
not damage the fibers. Because of these difficulties, to the best of
our knowledge, experimental data are not available for the elastic
or plastic properties of polymer nanofibers with diameters less
than 50 nm. Therefore, it is not yet clear if the stiffening and
strengthening effects described above are peculiar to fibers in the
range of diameters from ~70 to 500 nm or if these trends would
persist to even smaller length scales. Molecular scale simulations
can provide valuable insights to help predict and understand the
mechanical behavior of such small-scale structures and to identify
any emergent behavior that is a consequence of their nanoscale
dimensions.

For example, it has been argued by several independent
research groups that physical measurements correlated with the
glass transition temperature T, indicate a difference between
T, of amorphous polymeric thin films and bulk counterparts. 1823
The results of these studies suggest the existence of a region of
increased macromolecular mobility near the surface of free-
standing, glassy polymer films or membranes. Through molecu-
lar dynamics simulations of amorphous polyethylene, we have
shown that the depression of the glass transition temperature may
also be observed for polymer nanofibers.** Invoking a simple
layer model, the reduced 7, can be rationalized by the assumption
that the surface of the polymer nanofibers exhibits increased
molecular mobility. The presence of this outer “layer” of en-
hanced mobility, which is more accurately a gradient material of
finite thickness located at the free surface, might modulate the
capacity of the material to sustain applied loads and thus affect
the measured mechanical properties of both polymeric thin films
and nanofibers. Another important parameter in determining the
mechanical properties of these structures is the ambient tempera-
ture, since both structural and mechanical properties can change
significantly in polymers as the glass transition temperature is
approached.

Previous computational simulations of amorphous (glassy)
polymeric, prismatic cantilevered plates adhered to a substrate
have shown that the overall bending modulus of the plate remains
comparable to bulk materials, until the width of the plates
approaches a critical value of 200, where o is the diameter of
the coarse-grained polymer segments.”>>® Below the critical plate
width, the bending modulus decreases with decreasing width and
can be significantly smaller than that of the bulk polymer.
Workum et al.?® showed that the material in the surface region
comprises a significant fraction of the entire width of the plate, so
that deviations from bulk behavior can be significant. None-
quilibrium molecular dynamics simulations using a coarse-
grained polymer model showed that congliant layers form near
the free surfaces of glassy thin films.”" These authors also
calculated that the ratio of the surface layer thickness increased
to more than half of the entire film thickness as the temperature
approached the 7, of the bulk polymer.?” Although two studies
of the structural and physical properties of simulated, glassy
polymer nanofibers have been reported to date, mechanical
properties of such fibers have not been calculated.”* However,
experimental studies of amorphous polymer thin films suggest
that the stiffnesses of PS or poly(methyl methacrylate) (PMMA)
thin films of thickness <40 nm on poly(dimethylsiloxane)
(PDMS) substrates, as inferred from elastic buckling of the
adhered films, are significantly less than those of bulk counter-
parts.’*3! This behavior was explained by applying a composite
model that consisted of a compliant surface layer of reduced
elastic modulus and a bulklike region at the film center.’!
Wafer curvature experiments have also indicated that the biaxial
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elastic modulus of PS thin films of 10 nm thickness is an order of
magnitude smaller than that of the corresponding bulk PS.*

Experiments and simulations therefore suggest that mechan-
ical properties of polymer nanostructures (i.e., free-standing or
adherent thin films of nanoscale thickness and fibers of nanoscale
diameter) can deviate significantly from that of the bulk polymer
counterparts, but with very different trends. Whereas the proper-
ties of adherent thin films depend strongly on the substrate to
which the film is adhered, free-standing films and fibers might be
expected to behave more similarly. Given these discrepancies, the
fundamental questions addressed in this work are (1) whether the
elastic and plastic properties of simulated, amorphous polymer
nanofibers are indeed different from those of the bulk material or
thin film counterparts, and (2) if these properties in fact differ
from bulk predictions, how this deviation depends on the fiber
dimensions for fiber radii <10 nm. We begin our discussion by
describing the modeling and simulation techniques used to
determine the elastic properties of the material, namely E and
v. We discuss the effect of surface tension on the axial force—
elongation response of nanofibers at low strain. We then report
results for elastic properties as a functions of fiber radius Rpper
and temperature and interpret them using a simple layer model.
We also report the characterization of oy and postyield behavior
as functions of nanofiber radius and temperature.

Simulation Model and Method

A. Model. All simulations reported here were conducted
using a large-scale atomic/molecular massively parallel si-
mulator (LAMMPS).>* LAMPPS is a molecular dynamics
code that efficiently processes intermolecular interaction
potentials for compliant materials such as polymers and
incorporates message-passing techniques and spatial decom-
position of the simulation domain on parallel processors
typical of state-of-the-art Beowulf clusters. We employ
a united atom model for polyethylene (PE), described ori-
ginally by Paul et al.** with subsequent modifications by
Bolton et al.** and In’t Veld and Rutledge.*® This is the same
force field that we used previously to characterize structural
and thermal properties of polyethylene nanofibers.”* The
functional form and parameters of the force field are given as

Epond = k(I =)’ (1)
Eangle = ka(e _90)2 (2)
31
Eorsion = Zik’[] —Cos l(/)} (3)
i=1

a0 o

where ky, = 1.464 x 10° kJ/(mol nm?), /y = 0.153 nm, k, =
251.04 kJ/(mol degz), 0o = 109.5°, k; = 6.77 kJ/mol, k, =
—3.627 kJ/mol, and k3 =13.556 kJ/mol. The nonbonded
potential parameters are &(CH,—CH,) = 0.391 kJ/mol,
&(CH3;—CH3)=0.948 kJ/mol, ¢(CH,—CH3) = 0.606 kJ/mol,
and 0=0.401 nm (for all united atom types). The nonbonded
interactions were truncated at a distance of 1 nm and were
calculated between all united atom pairs that were located on
two different molecular chains or that were separated by four
or more bonds on the same chain.
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Since we implemented a united atom force field, the
prototypical PE nanofibers are composed of methyl and
methylene groups only, wherein the hydrogen atoms are
lumped together with the carbon atoms. We simulated two
different molecular weights, where each polymer chain with-
in the fiber has either 100 carbon atoms (C100) or 150 carbon
atoms (C150) on the backbone. The size of the representative
volume element (i.e., simulation box) of these simulated
systems thus ranged from 1500 carbons to 150 000 carbons.
Using the Gibbs dividing surface method to determine
the fiber diameter, as described previously,?* these systems
corresponded to fibers of diameter 3.7 nm <d<17.7nm ata
simulated temperature 7= 100 K.

B. Simulation Methods. Free-standing PE nanofibers were
prepared in a two-step molecular dynamics (MD) scheme as
explained in more detail previously.?* In the first step, the
cubic simulation box was equilibrated using periodic bound-
ary conditions at 495 K, which is above the melting tem-
perature of PE The initial density within the simulation box
was 0.75 g/em®.

To determine the mechanical properties of solid PE nano-
fibers, we next cooled bulk structures from 495 to 100 K
with an effective cooling rate of 1.97 x 10'° K/s. The glass
transition temperature (7,) for bulk amorphous PE de-
scribed by this force field has been previously estimated to
be 280 K 37 and T, of the surface layer was estimated to be
150 K.** We used an NPT ensemble with a constant,
isotropic pressure of P= 10> Pa during cooling. We saved
configurations at three different temperatures (100, 150, and
200 K) for determination of bulk mechanical properties and
subsequently used these configurations to construct nanofi-
bers. In this second step, the simulation box dimensions were
increased simultaneously in two directions (i.e., x and y)
without rescaling coordinates, such that the system no longer
interacted with its images in these directions. The box
dimension was unchanged in the third direction (i.e., z).
Upon subsequent relaxation in the NVT ensemble for
10 ns at the desired temperature, the system reduced its
total energy by forming a cylindrically symmetric free sur-
face concentric with the z-axis of the box. The resulting
nanofiber was fully amorphous and periodic along the
z-direction. Measurement of the local order parameter

=(3 cos® 0; — 1)/2, where 6; is the angle between the
z-axis and the vector from bead i—1 to bead i + 1, revealed no
significant orientational order within the fibers, other than a
very weak tendency for chain ends to orient perpendicular,
and middle segments parallel, to the fiber surface. The bulk
configurations at 100, 150, and 200 K were also equilibrated
in the NPT ensemble, with the usual periodic boundary
conditions in x, y, and z, before deformation to determine
the bulk mechanical properties.

Deformation of fibers was simulated by controlling the
displacement of the z dimension of the simulation box to
induce uniaxial deformation parallel to the fiber axis
(Figure la); the free surfaces of the fibers were uncon-
strained. Deformation of the bulk configurations was simu-
lated by rescaling one dimension of the simulation cell, while
allowing the other two orthogonal dimensions to fluctuate in
response to the barostat, as described in detail in Capaldi
et al.’” The resultmg strdm rdte for all temperatures ran-
ged from 2.5 x 10% to 10'"° . For the fibers, results are
presented initially in the form of applied force Vs strain,
since converting force to stress requires an assumption
regarding the cross-sectional area of the fibers. As argued
previously,”® defining the cross-sectional area requires a
subjective decision, the effect of which becomes significant
when the material dimensions are reduced to a length scale
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Figure 1. (a) Side view of a 30xC150 PE nanofiber obtained at the end
of the NVT equilibration step, with the frame of the simulation cell and
a cylinder corresponding to the approximate fiber diameter and
orientation rendered for clarity. The simulation cell includes 30 mole-
cules, each having 150 carbon atoms, and has a radius Rgpe,=2.8 nm at
100 K accordmg to the Gibbs dividing surface method.>* (b) An
enlarged view of the simulated fiber, with the three periodic images
along the fiber axis shown, Both images were rendered using POV-Ray
v3.6 ray-tracing software.” e

comparable to the size of the particles themselves (~1 nm);
different methods for defining the diameter of a fiber can
thus lead to significant differences in the value of stress
obtained. Samples were deformed in both compression and
tension up to a strain ¢ = +0.05, which is in the linear elastic
deformation range at temperatures of 100 and 150 K, as
confirmed by the linearity of the computed force—strain
response over this range. In the case of 200 K simulations,
the force—strain response was linear only up to a strain ¢ =
0.02. To improve the signal-to-noise ratio in the computed
virial equation for forces acting on the fiber (for small
systems), four different initial configurations were simulated
under identical conditions, and the resulting force—strain
curves were averaged. Where necessary to compute stress, we
invoked the Gibbs dividing surface (GDS) to define the
diameter of the fibers, as described previously.24 Young’s
elastic modulus was calculated from the slope of the stress—
strain response in the linear elastic regime. We also studied
the plastic deformation behavior of both bulk and nanofi-
bers by continuing deformation up to a total strain e=0.2 at
100 and 150 K with a constant strain rate of 10° s~'. For
each simulation, data for force vs strain during plastic
deformation were averaged over a strain interval of 0.002.
The axial force on the fiber at yield was calculated from the
intersection of two lines, the first being fit to the force—strain
curve in the low-strain, elastic deformation region and the
second being fit to the force—strain curve in the plastic
deformation region; yield stress was thus computed as the
force at yield (intersection of these piecewise linear fits)
normalized by the GDS-defined cross-sectional area of the
fiber.

Results

A. Effect of Surface Tension on Stress. Table 1 summarizes
the simulated systems. In this table, chain length is the
number of carbon atoms in one chain, N is the total number
of atoms in the system, L is the length of the simulation box,
and R, 18 the radius of the nanofibers calculated by the
GDS method.

Figure 2 shows the force—strain response of a nanofiber
that was deformed uniaxially at 100 K. A closer inspection of
this figure reveals that the force does not decrease to zero at
zero applied strain. This is a feature of the nanofibers that is
also suggested by continuum mechanics to be a consequence
of surface tension.*® Simulations of bulk systems (i.e., peri-
odic boundary conditions in x, y, and z with no free surfaces)
confirm that the force—strain responses indeed passes
through the origin in this case.
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Table 1. Chain Length and Radius Values, Determined via the GDS Method, for Simulated PE Nanofibers at All Temperatures Considered in

This Study
chain length N Lat100 K (nm) Rpper at 100 K (nm) L at 150 K (nm)  Rpper at 150 K (nm) L at 200 K (nm)  Rpper at 200 K (nm)
C100 1500 3.39 1.848 3.40 1.875 3.47 2
C100 3000 4.27 2.312 4.29 2.371 4.34 2.4
C150 4500 4.88 2.762 4.90 2.794 4.93 2.81
C100 15000 7.29 4.1 7.33 4.148 7.38 4.2
C100 50000 10.92 6.15 10.98 6.2 11.02 6.21
C100 100000 13.75 7.71 13.79 7.75 13.84 7.76
C150 150000 15.75 8.84 15.80 8.94 15.87 8.96
Toinvestigate the finite force that is observed in the force— T T
strain response, we calculated the instantaneous force tensor 9
for equilibrated nanofibers (i.e., no elongation/compression) 6.0x107 ¢ iy
from the virial tensor W as
-9
1 Noond Nangle 30X1 0 r .
f=- [Z Wbond, i+ Z Wangle,i ) I
Lfiver $5 i=1 <
0.0 M
” - [ ]I] ” I
Ndined Natom 1 Natom Y— "WMN qm | l
+ ) Waneai + Y Y Wi ‘ ‘
i=1 i1 =it -3.0X10'9— f )
Natom
+ Wkinetic] (5) -
; -6.0x107" y

where Lgper 1S the length of the fiber. Equation 5 is the
summation of all contributions due to bond stretching, bond
angle bending, bond torsion, Lennard-Jones interactions,
and kinetic contributions. The explicit expressions of the
virial contributions can be found elsewhere.***' We calcu-
lated the force tensor in cylindrical coordinates, appropriate
to the geometry of the fibers. Figure 3 shows the radial force
fr as a function of distance from the fiber center. For this
analysis, the fiber was divided into concentric cylindrical
shells, starting from the fiber axis. The virial contributions
were summed for the atoms that belonged to the same
cylindrical shell. To translate the results for f, into radial
stress 0., we define Rgpe, according to the GDS method.?*
The radial stress is given by

fre
O =~ (6)
! JTRﬁberz

The surface tension can be calculated by integrating the
radial stress o, as follows:

y :/ oy dr (7)
0

Figure 4 shows the magnitude of surface tension calculated
from eq 7 as a function of fiber radius. The error bars
represent the standard deviation for the four different con-
figurations simulated.

Here, we can also explore the validity of the continuum
theory and Young—Laplace equation for small diameter
fibers.*” This equation can be written as follows for a
cylinder:

Y
0., = 8
- Rﬁber ( )

where y is surface tension and Rgpe, i1s the fiber radius.
This relation suggests that there is a finite stress on the
nanofibers due to the contribution of surface tension, even
in the absence of elongation or applied force. The relative

0.06 -0.03 0.00 003 006
Axial strain (e_)

Figure 2. Force along the axial direction (f..) as a function of axial
strain (e..) in the elastic regime for a nanofiber with N/L = 2057.61
united atoms per nm of fiber length (Rgpe,=4.1 nm by the GDS method)
at 100 K.

7.0x10™"} ]
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Figure 3. Radial force profile extending from the fiber core to the free
surface enables the calculation of radial stress (Rgper = 4.1 nm by the
GDS method at 100 K).

contribution of this finite stress term naturally increases as
the fiber radius decreases.

Since we calculated both o, and 0. directly from the virial
equation of atomistic interactions as detailed above, we can
calculate a second estimate of the surface tension y, subject
to the validity of eq 8. Estimates of y using eqs 6 and 8 agree
within 1 mN/m. These estimates from computational simu-
lations also compare well with an experimental estimate of
44.7 mN/m for amorphous polyethylene at 100 K, obtained
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Figure 4. Surface tension as a function of Ry, as calculated from the
radial component of the stress tensor at 100 K. Solid squares represent
systems with chain length C100; open squares represent systems with
chain length C150.
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Figure 5. Dependence of F/(N/L) on fiber parameter N/L at three
different temperatures: 100, 150, and 200 K and at a strain rate of
2.5%10%s7!. See text for details. Solid symbols represent systems with
chain length C100; open symbols represent systems with chain length
C150.

by extrapolation from the experimentally measured surface
tension of a polyethylene melt between 423 and 473 K.+
These results confirm that the source of the finite stress at
zero elongation is the surface tension and that the continuum
theory is capable of accounting for this phenomenon even at
these very small length scales.

B. Elastic Deformation. From the slope of force vs strain
(f..—e response) in the elastic regime (Figure 2), under
uniaxial tension and compression parallel to the fiber long
axis, we compute the quantity F, which has units of force and
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Figure 6. (A) E vs Ry, at 100, 150, and 200 K and at a strain rate of
2.5%10% s~ The data points represent simulation data; the solid lines
show the best fit to the composite model described in the text. Symbols
are the same as in Figure 5. The reasonable fit of the data at larger Rpe,
indicates that the mechanical behavior is well-described by a mechani-
cally effective surface layer of constant thickness. (B) & vs Rgper at 100,
150, and 200 K suggests that the mechanically effective surface layer
thickness decreases with increasing temperature.

is related to the elastic modulus through the cross-sectional
area, F’=EA.

Figure 5 shows the quantity F/(N/L) as a function of N/L
at 100, 150, and 200 K. N is the number of atoms in the
simulation, and L is the length of the simulation box along
the z direction (the fiber axis). Thus, N/L is proportional to
the linear density (mass per unit length) of the fiber, which is
conventionally expressed in units of tex in the fiber industry;
tex is the mass in g of 1 km of fiber. F/(N/L)is proportional to
the specific modulus of the fiber (E£/p, where p is the density
of the fiber) and is conventionally expressed in units of N/tex.
The use of fiber industry units here avoids the need to
introduce a definition for fiber radius in order to characterize
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the fiber deformation behavior. All three temperatures are
below the glass transition of bulk PE (280 & 30 K*”) and were
chosen to bracket the glass transition temperature estimated
for the surface of these fibers (150 K**). As can be seen from
this figure, the specific modulus F/(N/L) decreases with
decreasing N/L for all temperatures considered. The specific
modulus for fibers of various sizes at 150 K are slightly lower
than those at 100 K; between 150 and 200 K, the specific
modulus drops significantly. This is an indication of the
increased compliance of the surface layer within this tem-
perature range, which contributes noticeably in nanofibers
of diameter d < 40 nm.

In order to interpret these results for deformation of
nanofibers in terms of deviation from bulklike behavior, it
is necessary to compute the Young’s modulus, E. For this
purpose, we reintroduce Rpper, defined using the GDS
method. Figure 6a shows E as a function of Rgpe,. By
simulation, we determined the Young’s modulus of the bulk
PE Epyi to be 2360, 1838, and 900 MPa at 100, 150, and 200
K, respectively, under an applied strain rate of 2.5x 10% s .
At a strain rate of 1 x10'° s~ !, E, . was found to increase
t0 2758, 2490, and 1800 MPa at the same three temperatures,
respectively. This strain rate dependence of E for simula-
ted bulk PE below the glass transition has been noted
previously.*® Tt is likely that some relaxation mechanisms
in the glassy state are suppressed at the higher strain rate.
Nevertheless, the main finding—that decreasing fiber size
results in increasing compliance—is relatively insensitive to
strain rate, so we report further results only for the lower
simulated strain rate. For all three temperatures, the
Young’s moduli of the fibers are lower than those of the
corresponding bulk configurations.

To explain the dependence of Young’s modulus on the
fiber radius, we make use of composite material theory. We
assume that the core of the fiber consists of bulklike material
with a Young’s modulus equal to that of the bulk Ey,; and a
surface region that is more compliant, with Eg,¢ < Epyk-
Assuming uniform strain throughout the fiber (i.e., the Voigt
limit for material composites), we have

E = Ebulkfbulk + Esurffsurf (9)

where E is the calculated elastic modulus of the fiber, fiu 1S
the volume fraction of the bulklike core, and fyu.r= 1—fpuic 1S
the volume fraction of the surface layer. The core volume
fraction fy,, can be written as

Joulk = (1— 3 )2 (10)

Rﬁber

where & is the thickness of the mechanically effective surface
layer; this parameter characterizes the length scale over
which the elastic response of the fiber varies. § was further
assumed to depend only on temperature; for fibers of radius
less than &, we set £ = Rpper-

We used best fits of eqs 9 and 10 to our simulated results to
determine values for both & and Ej,,rat each temperature, as
shown in Figure 6a. According to eqs 9 and 10, the effective
Young’s modulus of the fibers should approach Ej, for
fibers with small radii, on the order of & or less, and should
asymptotically approach to Eyy for fibers much larger than
&. For the range of fiber radii simulated, the approach to Eg.¢
around Rpper = & is accurately captured at 100 and 150 K,
while the approach to Epyy at large Rpper 1S observed at
200 K. Figure 6b indicates the dependence of § on Ry, at all
three temperatures. From the fit to the two-layer composite
model, we obtain values for E,rof 1050, 890, and 30 MPa at
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Figure 7. Poisson’s ratio increases as the fiber radius increases at 100
and 150 K. Symbols are the same as in Figure 5. Solid symbols represent
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temperatures of 100, 150, and 200 K, respectively. For &, we
obtain values (at sufficiently large fiber radius Rgpe) of 3.4,
2.8, and 1.0 nm at temperatures of 100, 150, and 200 K,
respectively. In other words, both the elastic modulus and
the thickness of the mechanically effective surface layer
decrease as the temperature increases from below to above
the glass temperature of the surface layer.

Enhanced surface mobility of glassy polymer thin films
and nanostructures has been demonstrated by several ex-
periments?"** and simulations.’®** As the dimensions of the
nanostructures decrease, the surface-to-volume ratio in-
creases, and thus the amount of material at the surface
becomes a more significant volume fraction of the entire
structure, and is reflected in the overall properties. The
increased mobility at the surface can cause significant stress
relaxations in the mechanically effective surface layer quan-
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Figure 9. Yield stress as a function of fiber radius at 100 and 150 K
determined at a strain rate of 10° s~'. Key: solid symbols, C100; open
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tified by &. According to our model (Figure 6b), the distance
over which these relaxations occur can be as large as twice the
radius of gyration of the chain (R puix = 1.6 nm for C100)
at 100 K. The thickness of this layer decreases to 2.8 nm at
150 K and 1.0 nm at 200 K. For amorphous polymer thin
films of PS or PMMA on PDMS substrates, Stafford et al.>°
estimated a surface layer of thickness 2 nm with an elastic
modulus lower than that of the corresponding bulk polymer.
Sharp et al.* suggested the existence of a liquidlike surface
layer with thickness of 3—4 nm, from studies of 10 nm and
20 nm diameter gold spheres embedded into a PS surface.
They also estimated the thickness of this layer to be 51 nm
from ellipsometry measurements.*® These estimates com-
pare favorably with our results for & of simulated amor-
phous PE.

The decrease in the thickness of the mechanically effective
surface layer with increasing temperature is similar to the
behavior that we noted previously for the cooperatively
rearranging region (CRR), which we used to explain trends
in the glass transition temperature as a function of PE
nanofiber diameter.* It is well established that structural
relaxation in amorphous polymers occurs through coopera-
tive rearrangements that involve larger domains of material
as the temperature is reduced through the glass transition.*’
Similar behavior can be expected for & However, the &
determined here for the mechanically effective surface layer
are larger than those of the CRR for thermal relaxations,
for which we previously calculated values of 1.0, 0.75, and
0.58 nm at 100, 150, and 200 K, respectively.>* To the best of
our knowledge, there is no study in the literature that
compares the thickness & of the mechanically effective sur-
face layer with that of the CRR. Our results show that
cooperative mechanical displacement occurs over a larger
distance (§) than thermal rearrangements (CRR), requiring
the involvement of more repeat units. Although mechanical
loads can be transmitted along an appreciable fraction of the
entire chain length, thermal relaxations take place over a
smaller number of repeat units, resulting in smaller surface
layer thickness. Although the two-layer composite model
appears to be a reasonable approximation to explain devia-
tions in Tg24 and in E from bulk material, this model is
nevertheless simplistic, and its estimates are certainly ap-
proximate. More complex models may need to be devised
in order to rationalize quantitatively the complex physics
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underlying thermal and mechanical properties of nanofibers
with those of the bulk and thin films.

We also computed the Poisson’s ratio v of the PE nano-
fibers as a function of fiber size and temperature directly
from the ratio of radial and axial strains. As Figure 7 shows,
v decreases from 0.3 to 0.1 nm as Ry, decreases from 8.8 to
1.8 nm. The Poisson’s ratio of large fibers is comparable
to the Poisson’s ratio of a typical glassy polymer of ~0.3.
The small nanofibers exhibited Poisson’s ratios similar to
porous composite materials such as cork (v ~ 0) and concrete
(v~0.2). The low Poisson’s ratio and reduced lateral con-
traction of the smallest glassy fibers may be partially attri-
butable to the increased volume fraction of the compara-
tively mobile, mechanically effective surface layer in these
nanoscale fibers.

C. Plastic Deformation. Plastic deformation (e.g., yielding
and subsequent fracture) of the nanofibers may have im-
portant consequences for the mechanical performance of the
individual nanofibers as well as the nonwoven mats compris-
ing such fibers. For this reason, we investigated the large-
strain behavior of several nanofibers under uniaxial tension
to determine the yield stress and its possible dependence on
temperature and fiber diameter.

Figure 8 shows such a force—strain response, up to and
beyond the onset of plastic deformation. Although the
signal-to-noise ratio of the force and strain data points
is inevitably low, the applied yield force f can be estimated
(see B. Simulation Methods). Yield force is then normali-
zed by the cross-sectional area to compute yield stress oy.
Figure 9 shows yield stress oy as a function of fiber radius
ranging from 40 to 72 MPa at 100 and 150 K and a strain rate
of 10° s~!. Experimentally available measurements of yield
strength for PE range between 9.6 and 33.0 MPa at room
‘[emperature.48 However, these measurements are invariably
for semicrystalline PE, in which the yield is predominantly
due to crystallographic slip along the {100}{001) slip sys-
tem,* which is activated at lower stress rather than yield
within the amorphous component. Thus, our results are not
necessarily inconsistent with the experimental data. For a
more direct comparison, we determined o, by simulation for
an amorphous bulk PE undergoing tensile deformation at a
strain rate of 10” s~ ! and obtained oy =150 and 120 MPa at
100 and 150 K, respectively. This tensile yield stress is ~25%
lower than that reported by Capaldi et al. for simulated yield
strength in compression, using the same force field and
comparable strain rates.’’ Vorselaars et al. have also re-
ported about 25% lower yield stress in tension than in
compression for their simulations of a bulk polystyrene
glass.®® Thus, the yield stress for these fibers ranges from
one-third to one-half that of the corresponding bulk values;
this suggests that the surface layer plays a significant role in
facilitating plastic deformation. Finally, although our simu-
lations indicate that the average yield stress increases mildly
with increasing fiber radius and decreasing temperature, the
error bars associated with identification of the yield point in
simulated force—strain responses, particularly for fibers of
radii less than 4 nm, preclude identification of size-dependent
trends in strength over this range of fiber radii.

Discussion and Conclusions

Through direct MD simulations of the uniaxial loading re-
sponse for amorphous PE nanofibers, we have calculated elastic
and plastic properties of individual fibers as a function of fiber
radius and temperature. Young’s moduli of these nanofibers
are found to decrease with decreasing fiber radius, which is
counter to experimental results available for semicrystalline
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and amorphous polymer fibers.*”!” However, the experimental
fiber diameters for which an increase in £ with decreasing fiber
diameter has been reported are much larger (e.g., 700 nm
for PCL'?) than the simulated nanofibers (3.7 nm < d < 17.7
nm) presented in this work. More importantly, to our knowledge,
all the nanofibers that were tested experimentally are semicrystal-
line, with the notable exception of PS,'” while all our simulated
nanofibers are completely amorphous. In one study of PCL
nanofibers, crystallinity and molecular orientation were found
to increase with decreasing fiber diameter, based on wide-angle
X-ray scattering experiments and draw ratio calculations, which
was correlated in turn with the increase in stiffness of PCL
nanofibers with decreasing radius.'? In contrast, Arinstein et al.
reported that crystallinity and orientation in nylon-6,6 nanofibers
showed only a modest, monotonic increase'® that could not be
correlated with the dramatic increase in Young’s modulus
observed with decreasing fiber diameter; the authors concluded
that confinement on a supramolecular length scale must be
responsible for this increase.'® In the case of amorphous PS
fibers in the range 410 nm < d < 4 um, the increase in shear
elastic modulus was attributed to molecular chain alignment
arising from the extensional flow of the electrospinning
process itself:'” as mentioned earlier, our simulated nanofibers
do not exhibit any significant molecular level orientation. Thus,
while we cannot account for the roles of crystallinity and
molecular orientation in the experimental fiber studies, we can
infer from our results that the primary consequence of diameter
reduction in the smallest fibers (ca. 5—20 nm diameter) is a
reduction of elastic modulus, Poisson’s ratio, and yield stress of
these fibers as compared to the bulk counterparts, all of which
we attribute to an intrinsically mobile surface layer. Significantly,
our results for decreasing stiffness with decreasing fiber dia-
meter are consistent with simulations of nanoscale cantilevered
free-standing film*>?® and adhered thin film simulations®’ as
well as with experiments on adhered thin films of amor-
phous glassy polymers™ >* of comparable (<50 nm) physical
dimensions.

The simple two-layer composite material model proposed
herein successfully captures the dependence of E on fiber radius
and temperature. The mechanically effective surface layer over
which the load is transmitted apparently entails the cooperative
motion of large portions of the chains (of C100 or C150). The
thickness of this mechanically effective surface layer exceeds
the length scale for thermal rearrangement, which requires the
cooperative motion of only 3—4 CH, units. Although these
estimates are approximate in view of the simplicity of the
composite model that was used, such a framework rationalizes
the evidence for decreasing elastic modulus with decreasing fiber
diameter.

Continuum theory suggests that finite stress, which is a
consequence of surface tension, exists on nanofibers prior to
deformation. The results presented here provide numerical
evidence that surface tension calculated from the virial equa-
tion for stress is in agreement with continuum mechanics
predictions* and experimental results.*> It is notable that
the Young—Laplace equation is capable of capturing the finite
surface tension effect on these fibers of nanoscale (<10 nm)
radius.
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